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1
Some Preliminaries

Human beings, alone among animals, come to possess rich conceptual
understanding of the world—understanding formulated in terms of such
concepts as evolution, electron, cancer, infinity, or galaxy. This book offers an
account of that human capacity for conceptual representation. Different
types of processes, operating over three different time courses (individual
learning, historical/cultural construction, and evolution), underlie the
formation of our conceptual repertoire. Some concepts, such as object and
number, arise in some form over evolutionary time. Other concepts, such
as kayak, fraction, and gene, spring from human cultures, and the con-
struction process must be understood in terms of both human individuals’
learning mechanisms and sociocultural processes. Humans create com-
plex artifacts, as well as religious, political, and scientific institutions, that
themselves become part of the process by which further representational
resources are created.

Cognitive science seeks a precise, explanatory account of the origin
of concepts in general, and of some especially important concepts in
particular. For example, when it comes to the concept integer, what are
the relevant innate representational resources bequeathed to us by
evolution? In creating such a concept, must we go beyond innately given
representations? In what ways, and by what processes, do individuals and
groups of individuals construct new representational resources? How is
knowledge culturally constructed and maintained? These questions must
be answered case by case—there is no reason, at the outset, to expect the
answers for concepts of causality or human agency to be the same as the
answers for mathematical or biological concepts, or for the concepts that
articulate our knowledge of chess or baseball.
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This book develops several case studies in some detail: the con-
cepts object (chapters 2 and 3), intentional agent (chapter 5), cause (chapter
6), integer (chapters 4 and 7), rational number (chapters 9 and 11), and
matter, weight, and density (chapters 10 and 11). In the course of exploring
these cases, many others are touched upon. What really matters to me is
not the cases (although I do admit finding each one intrinsically fasci-
nating), but the lessons to be drawn from them. My goal here is to
demonstrate that the disciplines of cognitive science now have the
empirical and theoretical tools to turn age-old philosophical dilemmas
into relatively straightforward scientific problems. I shall illustrate the
progress science has made in resolving debates about the existence,
nature, content, and format of innate knowledge. I consider the thesis
that conceptual resources are continuous throughout the life span. I
debate the nature of concepts and intuitive theories, and also how to
distinguish between conceptual change and belief revision and I show
how these controversies bear on the relations between language and
thought.

This introductory chapter introduces the problem I seek to solve,
states the major theses that are developed in the chapters to come, and
provides an overview of the book. As this is a book on the origin of
concepts, I begin by sketching what I mean by the term “concept.”
Concepts are mental representations. Indeed, they make up only part of
our stock of mental representations, so discussions of them must distin-
guish among types of mental representations, saying which ones are
concepts. The book’s first major thesis is that there are two types of
conceptual representations: those embedded in systems of core cognition
and those embedded in explicit knowledge systems, such as intuitive
theories. The book’s second major thesis is that new representational
resources emerge in development—representational systems with more
expressive power than those they are built from, as well as representa-
tional systems that are incommensurable with those they are built from.
That is, conceptual development involves theoretically important dis-
continuities. The book’s third major thesis is that the bootstrapping
processes that have been described in the literature on the history and
philosophy of science underlie the construction of new representational
resources in childhood as well.
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Concepts and Mental Representations

Concepts are units of thought, the constituents of beliefs and theories,
and those concepts that interest me here are roughly the grain of single
lexical items. Indeed, the representations of word meanings are paradigm
examples of concepts. I take concepts to be mental representations—
indeed, just a subset of the entire stock of a person’s mental representa-
tions. Thus, I use phrases such as “the infant’s concept number” to mean
whatever infant representations (if any) have numerical content, having
argued independently that the representation in question (e.g., of
number) should be considered a concept, as opposed to a percept or a
sensory representation. I assume that representations are states of the
nervous system that have content, that refer to concrete or abstract
entities (or even fictional entities), properties, and events. I do not
attempt a full philosophical analysis of the concept of mental represen-
tation itself; I will not try to say how it is that some states of the nervous
system have symbolic content. Such a theory would explain how the
extension of a given representation is determined, as well as providing a
computational account of how that representation fills its particular
inferential role, how it functions in thought.1

Of course, any theory of the origin of concepts requires some idea of
what concepts are and how their content is determined, just as any theory
of conceptual content must comport with our best account of how
concepts are acquired. Here, I sketch the assumptions that have guided
my inquiry from the outset: I assume that there are many components to
the processes that determine conceptual content, and that these fall into
two broad classes: (1) causal mechanisms that connect a mental repre-
sentation to the entities in the world in its extension, and (2) computa-
tional processes internal to the mind that determine how the
representation functions in thought. In broad strokes, then, I assume a
dual theory of conceptual content (Block, 1986, 1987).

In order to study the origin of concepts, one must characterize their
developmental and evolutionary trajectories, and to do that one must
discover what kinds of mental representations and which specific con-
cepts nonhuman animals and human infants and children have. In the
pages to come, I work backwards from behavioral evidence for a given
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representation’s extension and inferential role to characterize that
representation’s nature and content, and whenever possible, to specify
something of its format. Chapter 14 draws out some implications for a
theory of concepts provided by my picture of their origins.

There are many different types of mental representations, and one
challenge faced by cognitive science is to find the principled distinctions
among them. Indeed, several historically important views of conceptual
development posit shifts in the types of mental representations available
to children of different ages, and such claims presuppose distinct kinds of
representations. I shall argue that different types of representations may
well have theoretically relevant differences in origins, in developmental
trajectories, in types of conceptual roles, and in extension-determining
mechanisms. Chapter 2 considers one picture of infants’ mental lives in
which the infant’s mind is articulated in terms of representations very
unlike those of linguistically and theoretically competent adults. William
James famously believed that the infant’s world was “one great blooming,
buzzing confusion” (James, 1890/1981, p. 496). Quine (1977) suggested
that infants begin with a perceptual similarity space that is transformed
through learning, especially through learning language, into a system of
representations articulated in terms of natural-kind concepts. Similarly,
Piaget (1954) proposed that infants begin life with a repertoire of sensori-
motor representations, achieving truly symbolic representations only at
the end of second year of life.

The views of James, Quine, and Piaget are related in their assump-
tion that a major distinction can be made between sensory representa-
tions, on one end of a continuum, and conceptual representations, on the
other end. All three theorists posited that sensory/perceptual repre-
sentations are developmentally primitive, and that uniquely human
mental capacities underlie the developmental processes through which
sensory/perceptual representations are transformed into conceptual ones.
Sensory representations can, of course, be distinguished from perceptual
ones, as I shall show in chapter 2, but these writers did not draw a clear
distinction between them. For present purposes, the important contrast is
between sensory/perceptual representations, on the one hand, and
conceptual ones, on the other. All three authors believed that nonhuman
animals, just like human babies, do not entertain conceptual repre-
sentations. Chapter 2 examines the thesis that infants begin with a
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representational repertoire that is limited to sensory/perceptual repre-
sentations and that conceptual representations are constructed only later
in development, relating this view to the empiricists’ theory of the origin
and nature of human concepts.

Examining this thesis requires distinguishing the two types of
representations (sensory/perceptual vs. conceptual), which is notoriously
tricky to do. Modern cognitive science justifies the Empiricists’ confi-
dence that representations of the perceptual aspects of the phenomenal
world (what things in the world look like, feel like, sound like, smell like,
and taste like) result from many levels of processing of the information in
physical stimulation impinging on sense organs. That is, as the empiricists
knew, there are causal connections between patterns of light, sound, and
physical forces and the perception of shape, pitch, depth, and the effort
expended in causing something to move. An intuitive first pass at cap-
turing the distinction between perceptual and conceptual representations
begins with the observation that representations of such features of
immediate experience differ in many respects from clear examples of
conceptual representations. The latter represent what things in the world
are, categorizing entities into abstract, theory-laden kinds, and positing
entities for which we have no sensory evidence.

This first pass at drawing the distinction between sensory/perceptual
and conceptual representations presupposes that one can do so on the
basis of their content. It assumes one can see, on the face of things, that
representations of shapes such as square are sensory or perceptual and
that representations of living things or numbers are conceptual. But that
can’t be quite right, for we certainly have concepts of sensed features of
the world. Conflicting with the assumption that shape representations are
paradigmatically perceptual, we have words for shapes, develop explicit
geometric theories of shapes, and have theories of how shape repre-
sentations are computed from patterns of retinal input. Conversely, as we
shall see, we have perceptual processes that create from sensory input
representations of abstractions such as number, agent, and cause.

No doubt there are many dimensions along which clear examples of
sensory/perceptual representations differ from clear examples of con-
ceptual ones. Chapter 2 discusses several in the course of exploring the
empiricists’ proposal (shared by many modern-day cognitive scientists)
that the mind begins with a representational vocabulary that is limited to
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sensory/perceptual primitives. Sensory/perceptual representations are
likely to differ from conceptual ones with respect to both important
aspects of mental representation—the mechanisms through which their
extensions are fixed and the nature of the inferential processes they
contribute to. They will also (sometimes) differ in format; I assume many
perceptual representations are iconic or analog, whereas at least some
conceptual representations are stated over discrete, arbitrary symbols (i.e.,
are language-like).

One reason for the empiricists’ belief that we start out with sensory/
perceptual representations and build up concepts from them is that they
could imagine how these can be appropriately connected to the world.
And they wanted their theory of development to mirror their theory of
the determination of content. Although they did not have Darwin to
appeal to, they assumed that sense organs guarantee the appropriate causal
connections between properties of real-world entities and our perceptual
ideas of these entities. I accept this view: the mechanisms of shape per-
ception, for example, are largely innately specified and guarantee that our
representations of round things pick out round things. Concepts, for the
most part, require different mechanisms to guarantee that a given
representation is causally connected to the entities it refers to. Evolution
did not provide us with an input analyzer that identifies electrons, justice,
or 3,462,179. While there certainly is also a causal story to be told about
how the content of the concept electron is determined, it will have a very
different flavor from the explanation for how the content of round is
determined. I shall argue, in the course of this book, that inferential role
plays a part in the causal processes through which conceptual repre-
sentations pick out their referents. Additionally, I accept that the prin-
ciples of content determination for concepts importantly involve social
interactions among people and metaphysically necessary features of the
entities they refer to. According to philosophers such as Saul Kripke and
Hilary Putnam, the extensions of natural kind concepts are fixed not just
by the mind but also by some social process of ostensive definition and by
the essential nature (a metaphysical matter, not an epistemological one) of
the entities so dubbed (Kripke, 1972/1980; Putnam, 1975; see also Burge,
1979). The discovery of the extension of the concept gold or of wolf is a
matter for science, not for philosophy, linguistics, or psychology. As for
the psychology of natural-kind concepts, they fall under the assumption
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of what Susan Gelman calls “psychological essentialism” (Gelman, 2003;
Medin & Ortony, 1989). According to the doctrine of psychological
essentialism, it is a fact about our mind that we assume (usually correctly,
as it turns out, but it needn’t be) that individuals of a given natural kind
have hidden essences that determine their very existence, their kind, and
their surface properties. We assume this even in the face of no guesses as
to a kind’s essential properties.

In sum, there are many causal processes that are involved in con-
necting representations in a mind to their referents, and these are likely to
differ systematically for sensory/perceptual representations, on the one
hand, and conceptual representations, on the other. Whether or not
inferential role plays a part in content determination, there is no doubt
that perceptual representations and conceptual representations differ in
many aspects of their inferential role. Sensory/perceptual representations
have different and more impoverished inferential roles from concepts.
They represent the here and now, and almost nothing else follows from
the fact that something is red, whereas rich inferences are licensed by
identifying something as an agent or identifying the substance a given
entity is made of. Conceptual representations, but not sensory/perceptual
ones, are embedded in conceptual structures such as intuitive theories that
support this rich inferential role. Conceptual representations articulate
causal and explanatory structures and are integrated with other concep-
tual representations.

Focusing on conceptual role, the philosopher Jerry Fodor (1983)
argued that a systematic distinction between kinds of representations can
be drawn in terms of how they are processed in the mind. He distin-
guished between modular input analyzers and central processes. For the
most part, sensory/perceptual processes are modular and conceptual
processes are central. Modular processes are data driven, automatic, fast,
and encapsulated. (A process is encapsulated if it operates on proprietary
input and ignores available information that is relevant to the compu-
tation at hand.) Perceptual illusions make the notion clear. Consider the
familiar Muller-Lyer illusion (Figure 1.1). You know (because I tell you
or because you measured them) that the two horizontal lines are the same
length, but you still see the lower one as longer than the upper one. Your
perceptual representation is encapsulated from (uninfluenced by) your
conceptual representation of the actual relative lengths. Central processes,
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in contrast to modular ones, are informationally promiscuous. That is,
there are no limits on what information may turn out, in the end, to bear
on any particular hypothesis, and we seek coherence among all of our
explicitly held beliefs.

Fodor’s processing distinction between perceptual representations
(the outputs of modular input devices) and conceptual representations
(inferentially interrelated with all other conceptual representations) is
important because it highlights the possibility that representations that do
not seem sensory/perceptual on their face may nonetheless pattern with
them with respect to modularity. His example was syntactic repre-
sentations. He argued that the parsing processes that output abstract
linguistic representations that are formulated in terms of concepts such as
noun phrase and verb phrase are modular, and thus such representations are
more like sensory/perceptual ones than conceptual ones.

Thesis 1: Core Cognition

This book’s first major thesis is that there is a third type of conceptual
structure, dubbed “core knowledge” by Elizabeth Spelke, that differs
systematically from both sensory/perceptual representational systems and
theoretical conceptual knowledge.2 Here I use the locution “core cog-
nition” rather than “core knowledge” because the representations in core
cognition need not be (and often are not) veridical and therefore need
not be knowledge. I shall argue that nonhuman animals, as well as human

Figure 1.1. The Muller-Lyer illusion illustrates the encapsulation of perceptual
processes from explicitly held beliefs. Our knowledge of the equality of the lengths
of the two horizontal lines does not determine our perception of them.
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beings, have systems of core cognition, and that core cognition is the
developmental foundation of human conceptual understanding.
Like sensory and perceptual features of the world, the entities in core
domains of knowledge are identified by modular innate perceptual-input
devices. Therefore, the extension of the symbols that articulate core
cognition is fixed, in part, by evolutionarily underwritten causal relations
between entities in the world and representations in the mind. However,
representations in core cognition differ from sensory and perceptual
representations in having a rich, conceptual, inferential role to play in
thought, even infants’ thought. Representations that are the outputs of
distinct core cognition systems are inferentially integrated and are in this
sense central.

Still, core cognition representations differ from the fully explicit
conceptual representations that articulate intuitive theories. The con-
ceptual role of the concepts that articulate core cognition is vastly less rich
than that of the concepts embedded in intuitive theories. They also differ
in the mechanisms that connect them to the entities they represent.
Other factors, in addition to causal connections mediated by innate
perceptual-input analyzers, play a role in determining the referents of
fully conceptual representations. These include the social processes
described by philosophers such as Kripke, Putnam, and Burge. I shall
argue that the inferential role has a crucial part to play in the processes
through which the referents of conceptual representations are deter-
mined. Finally, knowledge acquisition in core domains is supported by
innate domain-specific learning devices, whereas the learning of intuitive
theories is not.

At Stake, A Picture of Conceptual Development

The thesis that core cognition exists is a nativist claim. Some authors have
doubted that it would be possible for there to be innate representations,
or that the notion is even coherent (e.g., Elman et al., 1996; Thelen,
Schoner, Scheir, & Smith, 2001). Authors have different notions in mind
when they use the term “innate,” so it is important to be clear. As I use
the term, innateness is interdefined with learning: innate representations
are those that are not the output of learning processes. This may seem
unsatisfying, for it simply pushes the problem of understanding what
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innateness is onto the problem of understanding what learning is.
Nonetheless, I believe that this contrast is both coherent and that it
matters in the debate about which representations are innate. This book is
an extended exploration of learning mechanisms, but for present pur-
poses, we can characterize learning processes as those that build repre-
sentations of the world on the basis of computations on input that is itself
representational. Clear examples are mechanisms that chose among
alternative hypotheses on the basis of rational processes that weigh evi-
dence (as in Bayesian learning processes), operant conditioning, con-
nectionist supervised and unsupervised learning algorithms, habituation,
and so on.

Notice that claiming that representations of red or round are innate
does not require that the child have some mental representation of red
or round in the absence of experience with red or round things. The
capacity for forming color or shape representations could be innate (i.e.,
not constructed through learning), even though no representations of
colors or shapes are ever activated until entities are seen. Notice also that
“innate” does not mean “present at birth.” Many representational
capacities arise from maturational processes. An example is stereoscopic
representations of depth, which emerge in humans quite suddenly
around 6 months of age. Even though stereoscopic depth perception is
not present at birth, I would want to say it is innate, for the child does not
have to learn to compute depth from the discrepancies between the two
images on the two retinas. Another reason some innate (unlearned)
representations may not be evident at birth is that the child has not yet
encountered the input to the processes that construct them or may not be
yet able to represent their inputs. Chapters 2 through 5 provide examples
of this sort. For a sophisticated discussion of the concept of innateness as it
applies to mental representations, see Spelke and Newport (1998).

I take it that any theory of conceptual development must specify the
stock of innate representations, as well as the mechanisms (both matu-
rational and learning mechanisms) that underlie change. Framing the
problem this way leaves all the room in the world for cantankerous
disagreement. Are the initial representational primitives limited to sense
data, as the British empiricists such as Locke would have had it? Or to
sensori-motor schemes, as Piaget would have had it? Or to a perceptual
similarity space, as Quine would have had it? Or is it theories all the way
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down, as Allison Gopnik and Andrew Meltzoff would have it?3 Insofar as
learning underlies conceptual development, are the learning mechanisms
domain-general or specifically tailored to particular conceptual content?
If domain-specific, what are the domains and what are the mechanisms of
learning within each? If domain-general, are they powerful pattern
abstractors, such as those well modeled in connectionist systems, deter-
minate computational algorithms formulated over symbolic machinery,
or bootstrapping mechanisms that draw on nondeterminate processes
such as analogical mapping, inference to best explanation, and inductive
guesses?

The proposals for the initial stock of representational primitives and
for the types of learning mechanisms that underlie cognitive develop-
ment are logically independent, although there are inductive relations
between them. Typically, researchers who believe that the initial state of
the baby consists of sensory representations alone also believe that
domain-general learning mechanisms of various sorts subserve conceptual
development. This position (innate sensory representations/domain-
general learning mechanisms) is discussed in chapter 2. A second view
(innate conceptual representations/domain-general learning mechan-
isms), held most forcefully by Gopnik and Meltzoff (1997), is that the
initial stock of representational resources includes conceptual repre-
sentations embedded in intuitive theories and that development is driven
by domain-general causal learning mechanisms of the sort that underlie
theory development in science. I endorse a version of this position, but
not with respect to the characterization of the initial state. Chapter 3
contrasts this position with a third position (innate conceptual repre-
sentations/domain-specific learning mechanisms), which holds that the
initial stock of representational resources includes conceptual repre-
sentations embedded in core domains and that development is driven, at
least in part, by domain-specific learning mechanisms.

It is important to note that the existence of innate conceptual
representations and domain-specific learning mechanisms does not pre-
clude the existence of sensory and perceptual representations and
domain-general learning mechanisms, or even that there are learning
mechanisms capable of taking perceptual representations as input and
outputting conceptual ones. Building rich and accurate representations of
the physical, social, and biological worlds is so important—to humans
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especially, but to all animals really—that many distinct representational
and learning mechanisms are likely to have been selected for. As Gallistel
(2000) commented, speaking of the proposal that there only one learning
mechanism, “From a biological perspective, this assumption is equivalent
to assuming that there is a general purpose sensory organ that solves the
problem of sensing.”

A variety of considerations lead individual scientists to favor one or
another picture of the initial state and of the processes that yield adult
conceptual capacities. Some reduce to matters of scientific strategy, such
as the dictum that it is scientifically preferable to assume the least possible
in the way of innate representations, in order to explore how much of the
adult state could be accounted for under any particular minimal
assumptions (e.g., sensory primitives, associationist learning mechanisms).
But scientific strategy must not be promoted to principles of theory
choice with truth-relevant status, as when it is claimed that such a picture
is more parsimonious than alternative pictures and thus should be con-
sidered right until proven wrong.

Other scientific strategies lead to a different picture. For example,
some scientists bet that human learning processes will be continuous with
those of other animals—an assumption that generates an expectation of
highly domain-specific and structured learning mechanisms. There are
myriad examples of specialized learning mechanisms in other animals—
ranging from passerine song learning, to vervet learning to identify
predators, to spatial learning in rats, to migratory birds learning the azi-
muth of the night sky (Gallistel, Brown, Carey, Gelman, & Keil, 1991,
review these particular cases). In each of these cases, innately specified
representations and domain-specific learning processes are essential parts
of the mechanisms that achieve the adult state.

Two Examples of Animal Core Cognition

I now turn to two examples from the ethological literature that show that
it is not problematic to attribute innate representations and domain-
specific learning mechanisms to nonhuman animals. These examples
illustrate what is meant by core cognition, and they raise the question:
What core systems has evolution endowed humans with?
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Indigo Buntings Learn to Identify North from the Night Sky

Consider the mechanism through which indigo buntings (a species of
migratory songbird) learn to identify north from the night sky. In today’s
night sky, Polaris is the North Star, the star in the region of the sky that
reliably indicates north. Because the stars change position over time, Polaris
will not always indicate true north, nor will true north in the future be
predictable from the constellations of today, for the constellations them-
selves migrate and change over evolutionary time. Indeed, 100,000 years
ago there was no Big Dipper, no Orion. Thus, evolution probably could
not have built a map of the sky in the brain of the indigo buntings on
which Polaris is identified as north, yet indigo buntings have such a map.
Presented with a stationary simulacrum of the night sky in a planetarium in
autumn, they take off as if to fly south as specified by the North Star, no
matter how the planetarium’s night sky has been oriented with respect to
true north in the actual world. Indigo buntings must have learned some-
thing equivalent to where the North Star is; how could they have done so?

Steven Emlen (1975) uncovered the mechanism by which nestling
indigo buntings achieve this feat. Because the earth rotates on an axis that
goes through true north, the North Star, positioned as it is at present
above the North Pole, marks the center of rotation for the night sky.
Emlen showed that nestling indigo buntings observe the rotating sky and
register the center of the rotation as a privileged direction. He showed
this by raising indigo buntings in a planetarium in which he could make
arbitrary skies rotate around arbitrary centers, and then observed which
direction the birds took off in the autumn, when their hormones told
them it was time to fly south. There is a critical period for this learning
device; if the buntings do not learn the North Star while they are
nestlings, they never do.

This is a paradigm species-specific, domain-specific learning device.
Clearly, not every animal will spontaneously note the center of rotation
of the night sky, nor will every animal infer true north from the obser-
vations if they happen to make them; thus, this device is species-specific.
With respect to domain specificity, this device is of no use in learning
what food is safe to eat, what the indigo bunting song is, or anything else
other than where north is. This device exemplifies other properties of
core domains, as well. Innate perceptual mechanisms allow the bird to

Some Preliminaries 15



identify the sky and to represent its rotation. And this device is a learning
mechanism; innately specified computations concerning the representa-
tion of celestial rotation ensure that the buntings end up representing
something important that they must, by logical necessity, learn: how to
tell north from the night sky.

That some state of the indigo bunting’s nervous system represents the
night sky is shown not only by the fact that it is activated by the night sky
but also how it plays a role in the computations that determine the
azimuth and direction of flight during migration. This is an example of
what I mean by taking behavioral evidence regarding the extension and
inferential role of some representation as evidence regarding its content.
Finally, these representations also exemplify the senses in which core
cognition is conceptual, but not fully so. The inferential role of the
representations of a view of the night sky go beyond the specification of
what it looks like (points of light distributed against a black background);
nothing in the description of what the sky looks like has the content
north. Still, the inferential role of bunting representations of the azimuth
is limited (as far as we know) to guiding navigation. In spite of a lack of
studies on the matter, it’s a safe bet that buntings do not create theories of
the earth and the heavens in terms they can use to explain why the center
of rotation of the night sky provides information about compass direction
on the earth. Thus, it would be a mistake to suppose that the bunting’s
representations of the night sky are anything like ours.

Conspecific Recognition

Ever since the pioneering work of Konrad Lorenz (1937), we have
known that many birds have an innate learning mechanism that enables
them to identify conspecifics, and that these representations are input to a
learning process that enables them to identify one important conspecific:
their mother. The learning device Lorenz discovered and called
“imprinting” causes chicks to attend to and seek proximity to the first
large thing that moves in certain ways. Countless beginning psychology
and ethology students have seen the footage of Lorenz walking through
the countryside with a line of goslings imprinted on him, following
behind. In this case, the perceptual analyzer that initially identifies mother
(or conspecific) does so on the basis of movement of a certain sort.
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Goslings and chicks will imprint on a large red shiny ball if that is the only
object they see moving during a critical period after birth—or so we
thought until the work of Mark Johnson and his colleagues (M. Johnson,
Bolhuis, & Horn, 1985). These researchers showed that mother/con-
specific identification is such an important problem that evolution has
provided at least two redundant learning devices to support it. A new-
born chick presented with a moving ball or person and also a stationary
stuffed hen will huddle near the stuffed hen.

Thus, Johnson and his colleagues demonstrated that chicks must
have an innate perceptual analyzer that specifies what a conspecific looks
like. Indeed, these researchers specified the nature of these innate
representations. The innate representation of conspecific appearance is
very sketchy—there must be an overall bird shape, with a head with eyes
and a beak on a neck on a body; if these elements are not in the right
configuration, the chick does not recognize the object as a conspecific.
However, a chick will huddle close to a stuffed duck or eagle or owl.
Johnson and his colleagues have much to say about this fascinating story,
bearing on the relations between the two different learning mechanisms,
their critical periods, and their neural substrates. My point here is simply
that there is an innate representation of hen that specifies roughly what
hens look like and contains the inferential role “stay close to that.” This
representation is part of a domain-specific learning device; the repre-
sentation is sketchy so it can be filled in with the details of the chick’s
own mother. In this way it is similar to the innate representations human
babies have of conspecifics (two eyes above a mouth within an oval, in a
certain configuration—representations that play a role in human babies’
identifying others like them and learning to recognize individual care-
givers; Morton, Johnson, & Maurer, 1990).

This book argues for many controversial conclusions, but the claim
that some representations are innate is not meant to be one of them. The
controversy comes when we begin to consider the content and nature of
innate representational systems. There certainly are innate sensory
representations. Also, innate input analyzers, constrained to accept only
some classes of stimuli (bird-shaped entities, face-shaped entities, the
night sky), create representations that clearly go beyond sensory content
and underlie learning about entities in the world that are crucial to
individual survival.
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Thesis 2: Discontinuities in the Course of Conceptual
Development

This book’s second major thesis is that human beings, alone among
animals, have the capacity to create representational systems that trans-
cend sensory representations and core cognition. That is, human beings
create new representational resources that are qualitatively different from
the representations they are built from. Many cognitive scientists, such as
Jerry Fodor (1975, 1980) and John Macnamara (1986), deny the very
possibility of true cognitive development in this sense, endorsing instead a
strong version of the continuity thesis. The continuity thesis is that all the
representational structures and inferential capacities that underlie adult
belief systems either are present throughout development or arise
through processes such as maturation.

Fodor’s (1980) argument for the continuity thesis was a one-liner:
one cannot learn what one cannot represent. In the famous debate
between Piaget, on the one hand, and Fodor and Chomsky, on the
other (Piatelli-Palmarini, 1980), Fodor argued that all known learning
mechanisms (e.g., parameter setting, correlation detection, prototype
formation) are variants of hypothesis testing, and one cannot confirm a
hypothesis unless one can already represent it. That is, learning involves
choosing between already formulated hypotheses, setting a previously
specified parameter, noting a correlation between already represented
states of affairs, and abstracting what is common among a set of repre-
sented exemplars. These mechanisms, by their very nature, cannot yield
a capacity to represent anything that was previously unrepresentable.

Fodor (1975) is famous for an application of this general argument,
leading to the conclusion that all lexical concepts are innate. This con-
clusion requires extra assumptions about lexical concepts—namely that
they are atomic, or can’t be decomposed into primitives. I eventually
address this version of Fodor’s continuity thesis in chapter 13, but for now
my concern is the more general argument. I do not contest the truism
that all learning involves building new representations from antecedently
available ones, nor that that all learning in the end can be analyzed as
forms of hypothesis fixation. My concern is where the hypotheses come
from. As I demonstrate in chapters 8 and 11, learning processes exist that
can create representations more powerful than their input. These then
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allow hypotheses to be formulated over concepts that cannot be
expressed in the vocabulary and syntax available at the outset of the
learning episode.

Fodor’s argument has a crucial weakness. It is falsified by a single
counterexample that shows that novel representational capacities, with
more expressive power than their input, must have been formed through
some learning process. Piaget (1980) invoked an excellent set of coun-
terexamples in his own reply to Fodor. Drawing from the history of
mathematics, Piaget pointed out that concepts of rational, real, and
complex numbers, and the mathematical notations required to express
them, cannot plausibly be attributed to infants, children, or even adults
lacking sufficient education in mathematics, and they do not plausibly
develop through maturation. Rather, such concepts arise as one learns
mathematics. Fodor might reply that infants must innately have the
representational resources to express these concepts, but there is an
ambiguity in that reply. Of course, they innately have the capacity to
construct those representational resources—that is not in dispute. What’s
actual is possible, and many mathematically literate people represent
rational numbers. The question is whether infants could express concepts
such as one-third or pi. I take these questions up in chapters 8 and 9.

Chapter 8 shows that the issue arises even in the case of the positive
integers. The integer list is a cultural construction with more represen-
tational power than any of the core representational systems on which it
is built, thereby providing a genuine counterexample to the argument
that conceptual discontinuities are in principle impossible. Chapter 9

sketches the later (in history and in ontogenesis) construction of the
concept rational number, which equally well transcends the representations
available at the outset of the construction process (namely, representa-
tions of integers created by children during their preschool years). In
these cases, discontinuity is cashed out in terms of vast increases in
expressive power.

The study of cognitive development provides many further coun-
terexamples to the continuity thesis. In the course of acquiring intuitive
theories of the world, children create new concepts that are incom-
mensurable with those from which they are built. In such cases, dis-
continuity is cashed out in terms of the creation of new concepts not
translatable into the concepts available at the outset of the episode of
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conceptual change. Chapters 10 and 11 discuss case studies of conceptual
change in the history of science and also in childhood.

If such existence proofs show that Fodor’s argument is wrong,
however, they do not show what is wrong with it. In particular, they do
not show us how the infant, child, mathematician, or scientist can use his
or her current representational resources to learn new ones. That is the
real challenge to cognitive science raised by Fodor’s argument, and it is
still unmet.

Those who deny the continuity thesis actually face two distinct
challenges, one descriptive and one explanatory. First, descriptively, we
must provide a satisfactory characterization of what it means for a rep-
resentational system to be qualitatively different from, to transcend, those
that preceded it. We must also provide evidence for two successive points
in cognitive development, the later of which contains a representational
capacity that transcends what was previously available. Second, with
respect to explanation, we must then specify a learning mechanism that
accounts for how new representational capacity could come into being.

Thesis 3: Quinian Bootstrapping

This book’s third important thesis is that the explanatory challenge is
met, in part, by bootstrapping processes such as those described in
the literature on history and philosophy of science. I call the kind of
bootstrapping process we need to understand conceptual discontinuity
“Quinian bootstrapping” because Quine (1960, 1969) developed partic-
ularly colorful metaphors in trying to explicate the idea (e.g., building
a chimney, pressing against the sides to support oneself as one scrambles up
it, building a ladder, and then kicking the ladder out from under, and
Neurath’s boat, in which one builds a structure to support oneself while
already at sea). To “bootstrap” means, literally, to pull oneself up by one’s
own bootstraps—something that is clearly impossible. The metaphor
captures what is hard about the process of creating new representational
resources that are not entirely grounded in antecedent representations.
Chapters 8 and 11 offer an account of the bootstrapping metaphors of
historians and philosophers of science in terms of the resources from
current cognitive science.
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The Quinian bootstrapping that underlies discontinuous conceptual
development must be distinguished from a different kind of learning, also
called bootstrapping, that is debated in the contemporary literature on
language acquisition. In the language-acquisition literature, boot-
strapping processes are invoked to explain how children solve a mapping
problem. Suppose children know, thanks to innately supported universal
grammar, that there will be nouns, noun phrases, transitive verbs, verb
phrases, adjectives, prepositions, quantifiers, and so on, in natural lan-
guage. Suppose, moreover, that they create innately supported repre-
sentations for individuals and kinds of individuals for actions, stuffs,
intentional causation, and so on. Children still face the formidable
problem of identifying how their own particular language expresses these
and other universal features of language and thought. Semantic boot-
strapping—the use of semantic information to infer syntactic categories—
gives the child a beginning wedge into the problem of discovering a
particular language’s syntactic devices. For example, the language learn-
ing mechanism might include the heuristic that representations of kinds
of physical objects ought to be mapped onto count nouns. Then, if the
child can figure out that a word is being used to refer to a kind of object,
the child may assign it to the lexical category count noun and use this
assignment to figure out how count nouns are marked in their language
(see, for example, Pinker, 1984). Syntactic bootstrapping exploits innately
given initial mappings of this sort to solve the converse problem—that of
discovering that particular words express particular concepts. For
example, if the concept give includes a giver, a receiver, and a gift, then
the child may exploit syntactic evidence that a given verb has three
arguments to guess that it might express this concept (see, for example,
Gleitman, Cassidy, Napa, Papafragou, & Trueswell, 2005). Both syntactic
and semantic bootstrapping require antecedent conceptual and linguistic
representations, and they support solving a very difficult mapping
problem. However, these bootstrapping processes do not deny conti-
nuity—no totally new representational resources are being created.

Some earlier students of language acquisition also appealed to
Quinian bootstrapping as a process underlying language acquisition. Isaac
Schlessinger (1982), for example, hypothesized that initially linguistic ele-
ments receive only semantic interpretations, such that creating syntactic
categories required constructing representations previously unrepresentable.
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Rather than just solving a mapping between previously available types of
representations, the process envisioned by Schlessinger creates a new type of
representations. That is, he suggested that syntactic categories are created by
a bootstrapping process of the sort envisioned in the history of science
literature (see also Braine, 1963). It is beyond the scope of this book to
consider whether Quinian bootstrapping is needed in the course of syntactic
development—at issue in that debate is how rich the innate language
acquisition device is. But I will show that Quinian bootstrapping definitely
has a role to play in explaining the origin of concepts.

1.7. Intuitive Theories—Explicit Conceptual Representations

As I mentioned at the beginning of this chapter, I distinguish two types of
conceptual representations: those that articulate core cognition and those
that articulate later developing linguistically encoded knowledge struc-
tures like intuitive theories. Intuitive theories differ from core cognition
in each of its distinctive features: they are not innate, the entities in their
domain are not identified by innate input analyzers, their format is most
probably not iconic, and they are not continuous throughout develop-
ment. Quinian bootstrapping mechanisms underlie the human capacity
to create theoretical knowledge that transcends core cognition.

Although there are many knowledge structures worthy of study
(scripts, schemas, prototypes, the integer list representation of number, the
alphabet), many students of cognitive development assume that one kind
of knowledge structure—intuitive theories—plays a particularly important
role in cognitive architecture. I endorse this assumption, and here I focus
on a class of intuitive theories—those that Henry Wellman and Susan
Gelman call “framework theories” (Wellman & Gelman, 1992; see also
Carey, 1985; Gopnik &Meltzoff, 1997; Keil, 1989). These are the theories
that ground the deepest ontological commitments and the most general
explanatory principles in terms of which we understand our world. One
task (but by no means the only task) in the study of cognitive development
is to account for the acquisition of framework theories.

It is worth stepping back and considering what is being presupposed
by the choice of the term intuitive theory rather than the more neutral
cognitive structure. Intuitive theories, like scientific theories, play several
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unique roles in mental life. These include: (1) determining a concept’s
most important features (the properties seen as essential to membership
in a concept’s extension); (2) representing explicitly held causal and
explanatory knowledge; and (3) supporting explanation-based inference.
Furthermore, the mechanisms underlying theory development, including
Quinian bootstrapping, differ from those that underlie the acquisition of
different types of conceptual structures. It is an empirical question
whether children have intuitive theories, and whether knowledge
acquisition in childhood involves the process of theory change. Those
who talk of “intuitive theories” and “framework theories” are explicitly
committing themselves to an affirmative answer to those empirical
questions. This commitment does not deny that there are important
differences between children as theorizers and adult scientists (hence the
qualifier, intuitive). Children are not metaconceptually aware theory
builders (D. Kuhn et al., 1988). In spite of these differences, the research
enterprise in which this work is placed presupposes that there are
important substantive similarities between scientific theories and
intuitive theories. Of course, the merit of this presupposition depends on
the fruitfulness of the research it generates. Chapters 10 and 11 present
case studies framed within this research tradition.

As mentioned above, intuitive theories differ from core cognition in
many ways. One of the goals of this book is to account for the origin and
development of theory-embedded conceptual knowledge, given a
beginning state of perceptual representations and core cognition. Many
researchers have blurred the distinction between core cognition and
intuitive theories. For example, Alan Leslie is one of the most articulate
advocates of the core cognition position, and he—like me—characterizes
core cognition as modular, encapsulated, supported by innate perceptual
analyzers, and unchanging during development. Confusingly, in dis-
cussing the infants’ beginning state, he characterizes core cognition in
much the way I have, yet he dubs his modules Theory of Mind Module
and Theory of Bodies Module (Leslie, 1994). That is, he characterizes
core cognition, but he calls systems of core cognition “theories.” This is
not merely a squabble about terminology, for if I am right that core
cognition exists and differs from explicit conceptual knowledge in the
ways specified above, then failing to adopt contrasting terminology
conflates fundamentally different kinds of mental representations.

Some Preliminaries 23



Gopnik and Meltzoff (1997) go further than merely calling infant
conceptual knowledge “theories”; they deny the distinction between
core cognition and theories. They explicitly characterize infants’ early
developing knowledge of bodies and agents as theoretical knowledge,
claiming that the mechanisms that underlie acquisition of knowledge in
these domains are the same as those that support theory development by
adult scientists. This leads to the seemingly absurd (and false, I shall argue)
conclusion that the processes by which infants achieve object perma-
nence are the same as those through which Darwin formulated the
theory of natural selection.

The confusion between core cognition and intuitive theories is
intelligible, for two of the paradigm cases of each have overlapping
content. Core cognition of objects overlaps with knowledge of intuitive
physics, and core cognition of intentional agents overlaps with an intui-
tive theory of mind. This overlap in content arises because the output of
the core cognition systems is part of the input to theory building. The
case studies in this book constitute an extended argument for the position
that theory building can, and does, transcend core cognition.

Overview of the Book

The chapters to come distinguish the representations that constitute core
cognition from two other types of representations: sensory/perceptual
representations and conceptual representations embedded in explicit
intuitive theories. Chapter 2 examines the hypothesis that the develop-
mental primitives are sensori-motor or perceptual. Chapters 3, 4, and 5

characterize core cognition and provide evidence for several domains of
human core cognition that exemplify its distinctive features. Chapter 6
considers the question of whether all innate representations with con-
ceptual content are embedded within core cognition systems, or alter-
natively, whether there are also innate central representations. Chapter 7
touches on some relations between core cognition and language.
Chapters 8 through 11 take on both parts of Fodor’s challenge to cog-
nitive science. They provide descriptions of discontinuous conceptual
development in which concepts come into existence that were not
expressible given earlier conceptual resources, and they characterize the
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bootstrapping mechanisms that underlie the change. Finally, the two
concluding chapters summarize my account of the origins of concepts
(chapter 12) and draw out the implications from these case studies for a
theory of human concepts (chapter 13).

NOTES

1. An excellent overview of competing accounts of concepts in the philo-
sophical and psychological literatures is provided in the collection of classic papers
assembled by Margolis and Laurence (1999). See also their own superb and com-
prehensive tutorial essay in the same volume.

2. See Carey & Spelke, 1994; R. Gelman, 1991; Leslie, 1994, and Spelke,
Breilinger, Macomber, & Jacobsen, 1992, for related characterizations of core cog-
nition.

3. Different pictures of the initial representational repertoire have articulated
theories of conceptual development in the Western philosophical/scientific traditions
at least back to the time of Greek thinkers. Here I am referring to works by Gopnik &
Meltzoff, 1997; Locke, 1690/1975; Piaget, 1954; Quine, 1960, 1977.
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2
The Initial Representational Repertoire: The
Empiricist Picture

In this chapter I begin to build the argument for core cognition by
marshaling evidence against the empiricist hypothesis that the initial state
is limited to sensory representations. Many modern thinkers, as disparate
as Piaget, Quine, eliminitivist connectionists, and systems dynamic the-
orists explicitly or implicitly share this empiricist assumption (e.g., Elman
et al., 1996; Piaget, 1954; Quine, 1960, 1977; Thelen et al., 2001). This
hypothesis has a certain plausibility. All evidence we have of the par-
ticular world we live in comes through our senses. Doesn’t this mean that
all of our knowledge must be able to be formulated in terms of sensory
primitives?

Here I counter this seductive argument, while summoning evidence
that some early developing representations are conceptual. The chapter
has some secondary goals as well. I discuss the methods I draw upon
throughout the first half of this book. Also, different methods yield
apparently conflicting data, and I give some sense of how conflicts might
be resolved. Finally, I lay out the arguments that convince me that some
conceptual representations are innate.

The Empiricist Picture

According to British empiricists such as John Locke, all human concepts
are grounded in a set of primitive representations—in Locke’s terms,
“ideas.” The primitive ideas are the output of sense organs—they are
sensory representations. They are primitive in two different senses. First,
these ideas are definitional primitives. All concepts are either primitive or
complex, and all complex concepts are defined in terms of primitive ones
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that themselves are understood without any definition (Locke, 1690/
1975; see Margolis & Laurence, 1999, for a superb tutorial on the
empiricist theory of concepts). Second, these ideas are developmental
primitives. The acquisition of concepts is explained by a specification of
the set of innate primitives and by the associative mechanisms through
which complex concepts are built from them.

The 18th-century British empiricists’ picture of conceptual develop-
ment finds articulate and ardent defenders to this day. This staying power
has two explanations. First, the empiricists staked out an ambitious set of
phenomena that a theory of concepts must be responsible for. They sought
to explain how concepts refer, how people categorize, how concepts
function in thought, how human knowledge is warranted, and how
human knowledge is acquired. They offered a comprehensive theory that
provided an integrated account of all of these phenomena and more. Few
contemporary theories of concepts have anything like the scope of the
empiricists’. Second, the theory contains important grains of truth.

That the primitive ideas are sensory was important to the empiricist
program. The empiricist explanation of reference depended on the view
that sensory representations refer to certain aspects of the world by virtue
of the operation of the sense organs. That is, they took as unproblematic
the view that our concepts red and round are based on the cases in which
red and round things cause us to have sensory representations of red and
round. As long as the referential potential of primitive concepts is
guaranteed by how sensation works, and as long as all concepts may be
defined out of primitive concepts, then the referential potential of all
concepts is explained. That is, the extensions of complex concepts are
determined by their definitional structure and the extensions of the
primitives from which they are built.

This is not the place for a full exposition and critique of the empiricist
view of concepts. Every part of the view has come under fire (see chapter
13). Most obviously, the project of defining all concepts in terms of
sensory primitives is unworkable. Most representations underlying human
natural language are not perceptual representations. Human beings rep-
resent nonobservable entities (beliefs, protons), nonobservable properties
of observable entities (functions, essences), abstract entities (numbers,
logical operators), and fictional entities (Gods, ghosts, Hamlet). Concepts
for such entities are not themselves the output of sense organs. Of course,
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the empiricists held that these concepts are nonetheless definable in terms
of perceptual primitives. No adequate definition has ever been provided
for most concepts (Fodor, Garrett, Walker, & Parkes, 1980; Laurence &
Margolis, 1999), and certainly no definitions for many concepts in terms of
perceptual primitives can even be attempted. Try doing so for the con-
cepts justice or sin, let alone the concept God.

This line of argument defeats the position that all human representa-
tions are either perceptual or defined in terms of perceptual representations.
However, it does not defeat the argument that the innate primitives are
perceptual, as long as one provides a learningmechanism that could account
for the creation during development of nonperceptual representations,
given a beginning stage containing only perceptual representations. I
believe that the bootstrapping processes that are characterized in chapters 8
through 11 underlie discontinuities in conceptual development, and thus I
do not accept a general learnability argument for the impossibility that the
initial state may consist only of perceptual, sensori-motor representations.
Rather, if we wish to characterize the innate representational primitives,
we have no alternative but to do the hard empirical work of finding out
what representations young infants have.

The empiricists certainly got two important points right. There are
innate sensory representations and their content is ensured by how our
sense organs work. The empiricists did not know that they could thank
natural selection for making this is so, but Darwin gave us a way of
understanding how the right causal connections between properties of
the world and states of the nervous system can be established and
maintained. It is because sense organs were selected to work as they do
that humans can see color and movement, can taste salt and sweet, can
hear tones and feel heat. The operation of evolutionarily constructed
input analyzers guarantees that the relevant representations refer to
aspects of the environment that are important to survival.

A Historical Aside: The Rationalist/Empiricist Debate About
Perception

Sensory representations may be roughly characterized as those repre-
sentations that are the output of the sense organs. They are what
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psychologists call proximal representations—those representations that
maintain the point of view of the pattern of stimulation on sense organs.
For example, a retinal projection is a proximal representation, as is a
representation of a pin prick on the back of my hand. As has been well
known for centuries, the information in the proximal stimulus greatly
underspecifies the distal world that was the source of the stimulation
in the first place. Distal representations capture aspects of the external
world—they exhibit constancies. Perceived size compensates for the fact
that proximal representations of the sizes of objects are determined by
distance; the retinal projection of a quarter is much larger at arms’ length
than 5 feet away, yet our perceptual representation of the actual size of
the quarter is accurate over these distances. Similarly, perceived shape is
three-dimensional, in spite of the fact that retinal projections are two-
dimensional.

Because the empiricists were committed to the view that develop-
mental primitives were sensory, they faced a formidable challenge in
accounting for our capacity to perceive the true shapes of objects, the true
depth relations among them, and so on. One arena of the historical
debates between empiricists such as Berkeley and Hume and rationalists
such as Descartes was their solutions to this challenge (e.g., Berkeley,
1732/1919; Descartes, 1637/19711). Consider the representation of depth
as an example. Empiricists such as Berkeley and Hume attempted to
show how representations of depth could be learned by associative
mechanisms operating over sensory primitives. They considered sensory
primitives such as proximal representations of size and shape, interposi-
tion cues, convergence of the eyes (felt effort in the muscles being greater
as a function of how converged the eyes are), and accommodation of the
lens (also conceptualized as felt effort). They then assumed that these cues
are associated, through learning, with cues to depth from other sensory
modalities—for example, proprioceptive cues to the difference between
reaching and contacting a nearby versus a more distant object, or
between walking to a nearby object and walking to a more distant object.
According to the empiricists, the veridical representation of depth is built
up from and constituted by this associative structure.

Nativists such as Descartes presented a very different picture. Des-
cartes did not deny that the information from which depth representa-
tions were computed must be the output of sense organs. Nativists do not
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believe in magic. Rather, he believed that there are innate inferential
mechanisms (today we would say computational mechanisms) that
instantiate constraints derived from geometry that take this input and
transform it into veridical representations of depth. His example was the
geometrical inference from convergence to depth, an argument ridiculed
by Berkeley (1732/1919) thus:

But those lines and angles, by means whereof mathematicians
pretend to explain the perception of distance, are themselves not
at all perceived, nor they, in truth, ever thought of by those
unskillful in optics. I appeal to any one’s experience, whether, upon
sight of an object, he compute its distance by the bigness of the angle
made by the meeting of the two optic axes? Or whether he ever
think of the greater or lesser divergence of the rays, which arrive
from any point to his pupil? Nay, whether it be not perfectly
impossible him to perceive by sense the various angles wherewith
the rays, according to their greater or lesser divergence, do fall on his
eye. Every one is himself the best judge of what he perceives, and
what not. In vain shall all the mathematicians in the world tell me,
that I perceive certain lines and angles which introduce into my
mind the various ideas of distance; so long as I myself am conscious
of no such thing. (pp. 15–16)

Of course, we now know that Descartes was entirely right—exactly
those computations are instantiated in the mind and they do contribute
to the perception of depth. Modern models of perception do not require
that the representations that enter into modular perceptual computations
be consciously accessible. Another example in the tradition of Descartes
would be the computation of depth from information derived from the
degree of mismatch between the images of an object derived from each
eye (stereopsis). Berkeley could similarly ridicule this idea by saying that
he is not aware that the two eyes yield different proximal images of an
attended object, and that even if he were aware of this fact, he wouldn’t
know how to calculate depth from it.

As far as I can tell, there is hardly any classical debate from the
history of philosophy of mind that has been more conclusively settled.
Every textbook on perception details the computations carried out over
sensory representations that yield veridical representations of depth, and
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all agree that such computations are subconscious, operate on proprietary
information, and are encapsulated (i.e., are modular, in Fodor’s sense, at
least to some degree). Showing Berkeley wrong, the evidence that at least
some of these computations are innate is overwhelming. Eleanor Gib-
son’s famous work on the visual cliff provided some of the first evidence
in support of innate mechanisms for depth perception: newborn animals
who have had no opportunity to form associative structures over different
sensory cues to depth avoid the deep end of a visual cliff (Gibson &Walk,
1960). With respect to human infants, Alan Slater’s demonstrations of size
constancy in newborns require that the infant represent depth (Slater,
Mattock, & Brown, 1990).

I draw two morals from this story. First, the question of whether
development begins with a stock of merely sensory primitives, or whe-
ther evolution endowed us with computational devices that yield ver-
idical representations of the distal world, is settled in favor of the existence
of Descartes-like innate perceptual input analyzers. Second, there is no
in-principle argument against the hypothesis that evolution endowed
animals with input analyzers that yield representations that are further
along the continuum between sensory representations and conceptual
ones than are depth representations. Representations further along this
continuum will be couched in the vocabulary of abstractions rather than
that of appearances and spatio-temporal relations. They will be central,
interacting with the output of other input analyzers, will be accessible,
and will have relatively rich inferential roles.

The Initial State: Perceptual/Sensori-motor Primitives

Important 20th-century psychologists and philosophers, as different as
Jean Piaget (1954) and W. v. O. Quine (1960), also held that the initial
repertoire of mental representations is limited to a set of sensory or
perceptual developmental primitives. Piaget’s position was that infants
begin life solely with representations that subserve innate sensori-motor
reflexes. All mental life, according to Piaget, is constructed from this
initial representational repertoire. For Piaget, the important properties of
sensory representations that distinguished them from conceptual ones
included their being the output of sense organs (and restricted to single-

32 The Origin of Concepts



sense modalities) and their content being limited to currently experi-
enced sensations.

Quine was no empiricist. He denied that theoretical terms or the
terms in natural languages could be defined in terms of perceptual pri-
mitives (or even that the notion of analytic definition made sense; he
denied the analytic/synthetic distinction). Nonetheless, he held that the
infant’s initial representational resources were limited to an innate per-
ceptual vocabulary, which he called a “prelinguistic quality space” and
which he conceptualized as an innate perceptual similarity space. In a
series of influential writings Quine developed three interrelated theses
about conceptual development (Quine, 1960, 1969, 1977):

1. Infants’ representations are radically different from those of their
elders, and are formulated with respect to a perceptual similarity space.

2. The concepts that articulate commonsense ontological commitments
are a cultural construction.

3. In the course of mastering natural language, each child acquires adult
ontological commitments through a bootstrapping process.

This book is an extended meditation on these three theses. In these
early chapters I argue, contrary to Quine, that many infant representa-
tions are conceptual and that many of our commonsense ontological
commitments are innate. However, I agree with Quine that some,
indeed most, of our commonsense ontological commitments are a cul-
tural construction, and in chapters 8 through 12 I will spell out how the
bootstrapping processes he envisioned work.

Whether there are innate conceptual representations is an empirical
question. Because both Piaget and Quine focused their discussions on
representations of objects (as did the British empiricists), I begin with a
case study of infant object representations. Both Piaget and Quine agreed
that young infants cannot achieve representations of objects that exist
independently of the infants’ own sensory experience of them.

Why Object Is Not a Perceptual Representation

Perhaps the most studied topic regarding infant representational capacities
is the concept object, in the sense of representations of substantial, three-
dimensional, material bodies that exist independently of the observer. Are
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Piaget and Quine correct that: (1) object representations are non-
perceptual; (2) object representations are not available to young infants;
and (3) object representations are built from sensory or perceptual pri-
mitives in the course of development?

Object representations, like depth representations, are clearly non-
sensory, for they represent distal entities. Sensory representations capture
object appearances such as color, retinally specified size and shape, and so
on, but they do not represent objects as objects. Between them, Piaget and
Quine offered several distinct reasons to consider object representations to
be nonperceptual as well as nonsensory. First, Piaget argued that if per-
ceptual representations are the output of modality-specific sensory ana-
lyzers, then object representations are not perceptual because they are
multimodal. For adults, the representation of a visually perceived object
specifies what it will feel like, where it will be if one reaches for it, and so
forth. Piaget, along with the British empiricists, and along with Quine,
believed that infants had to learn the cross-modal correspondences among
the sensory representations of object appearances. This was no problem for
their theories; indeed, the British empiricists believed that learning those
cross-modal correspondences constituted building the complex concept
object.2 Of course, learning contingencies among sensory representations
in different sense modalities does not require nonsensory vocabulary. But
the learning of such contingencies, Piaget thought, was the first step in
transcending the initial sensori-motor primitives. Second—and here
Piaget and Quine are also in agreement—if perceptual representations are
limited to what currently experienced entities look like, feel like, taste
like, and move like, objects cannot be represented as individuals that
persist through time, independently of the observer. Quine agreed with
Piaget that there would be no representations of permanent objects. As
Quine pointed out, a perceptual vocabulary does not include fundamental
quantificational devices. The child could not represent a given object as
the same one as one seen earlier, for sensory representations do not
provide criteria for numerical identity.

According to Quine, the infant endowed only with an innate per-
ceptual quality space can sense similarity among experiences that are
represented in this space (flesh-colored, milk-smelling experience at
time 1; flesh-colored, milk-smelling experience at time 2), and the stable
configurations of these qualities (color, shape, smell, sound) could
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certainly be learned. This would enable the child to recognize instances
of mama-experience. In Quine’s words, “his first learning [of the word
‘mama’] is a matter of learning how much of what goes on around him
counts as the mother” (1960, p. 92). But being able to recognize instances
of mama-experience is not the same as representing one enduring mother
—the same one today as yesterday.

Quine emphasized how much an ontology exhausted by a percep-
tual quality space differs from one articulated in terms of enduring
individuals. For example, in one passage, he speculated that the baby
reconceptualizes his mother once he has mastered the scheme of
enduring and recurring physical objects. He also insisted that our adult
commonsense ontology is a cultural construction, just as the concepts
that articulate scientific theories are cultural constructions. Just as explicit
theories embody their ontological commitments in language and form-
alisms, so too our commonsense ontology is captured in language.
Indeed, the process Quine envisioned though which babies transcend the
innate perceptual quality space and master the ontology of enduring and
recurring physical objects crucially involves language acquisition. Quine
proposed that the child bootstraps the new ontology by gradually
learning the quantificational devices of natural languages—quantifiers,
determiners, the is of numerical identity, and so forth. Chapters 8

through 12 present a sympathetic characterization of Quinian boot-
strapping processes, arguing for their role in the construction of new
representational resources. My disagreement with Quine is straight-
forwardly empirical; in my view of conceptual development, he might be
right. Rather, his picture of the infant just turns out to be false.

What Piaget wrote about under the rubric of “object permanence”
comes to the same thing as what Quine wrote about as “divided refer-
ence” and quantificational capacities. When babies reach for a hidden
object, and we attribute to them an appreciation of object permanence,
we assume that they represent the object they seek as the same object, the
same one, that they saw disappear. Otherwise, it isn’t object permanence,
but rather is some learned contingency, such as an appropriate instanti-
ation of “reach where I saw some visual property disappear and some
visual property or tactual property will be there.” The latter generaliza-
tion is formulated in the language of sensori-motor, perceptual, and
spatio-temporal primitives; whereas “reach for the object that went
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behind the screen; it will still be there” is not, for “the object” and “it”
pick out a single individual’s persisting through occlusion. The criteria for
individuation and numerical identity for ordinary objects go beyond
perceptual primitives. In the adult state, representations of objects are
constrained by the principle of spatio-temporal continuity (objects do not
go into and out of existence). Although perceptual primitives can specify
a currently perceived, bounded entity and its current path of motion,
they do not specify that the entity continues to exist when we lose
perceptual contact with it. This construal is provided by the mind; and
the question raised by both Piaget and Quine was how representations of
permanent individuated objects, quantified as discrete individuals tracked
through time, come to be formed.

Before we consider how infants form representations of object
permanence, how they create criteria for individuation and numerical
identity of objects, we must consider when they do so, for Piaget’s and
Quine’s theories of how depend crucially on when—so, too, for cross-
modal representations of objects. Piaget claimed that cross-modal cor-
respondences among perceptual properties of objects were learned by 7

months (by the end of what he called the “stage of secondary circular
reactions”), but that infants’ representations of objects as permanent,
existing apart from their own sensori-motor schemas, emerged only
between 18 and 24 months (heralding the end of the stage of sensori-
motor intelligence). Quine claimed that the capacity to represent
“objects as such” emerged only when the child mastered the quantifi-
cation devices of natural language (i.e., between ages 2:0 and 3:0).
Therefore, evidence that 2- to 6-month-olds have these representational
capacities challenges Quine’s and Piaget’s proposals. Nonetheless, the
question of innateness is still open, for infants might form these repre-
sentational capacities from perceptual primitives during the first two
months of life. At the end of this chapter, I shall return to the question of
innateness.

Piaget’s and Quine’s Evidence

Quine, a philosopher, did not consider actual empirical evidence for his
claim that the initial state consists solely of perceptual representations.
Rather, he discussed possible observations, considering whether they
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could possibly show that prelinguistic infants’ representational capacities
are the same as yours or mine. He argued that any piece of behavior we
observe is consistent with radically different ontological commitments on
the part of the behaving subject. The child who points to a bottle and says
“bottle,” or who picks up a bottle and drinks from it, may have the
capacity to represent to individual bottles and to represent generalizations
such as “that bottle has milk in it,” or may simply have learned asso-
ciations between perceptual features of bottle, on the one hand, and a
spoken word or an action, on the other. Of course, it is this line of
argument writ large that ends in Quine’s views of radical indeterminacy,
for the same considerations bear on adult linguistic capacities as well.
In Quine’s view, ontological commitments are fixed only up to the
indefinite number of schemes that are consistent with the grammatical
commitments of a given language. I believe Quine is wrong, and we can
bring evidence to bear on the child’s quantificational capacities and
ontological commitments.

Piaget’s genius was at bringing empirical data to bear on classic
philosophical questions, and his experiments on object permanence are
justly among the most celebrated in developmental psychology. He
reported observations that are consistent with the claim that young
infants lack representations of permanent, multimodally specified,
objects. With respect to intermodal correspondences, he observed infants
being startled when they made a fast movement of their own hand across
their visual field, and he assumed this meant that they did not know what
their own hand looked like and that they could not relate a represen-
tation of a visually located visual experience with a proprioceptive
representation of the location of limb. He also made observations of
infants’ examining their own hands or feet and he assumed that these
provided the experience the infants needed to make intermodal repre-
sentations of their own bodies. These could then scaffold, associating the
visual, tactual, and spatial correspondences among the sensory repre-
sentations of external objects.

With respect to object permanence, Piaget made a two-part empirical
argument that infants did not represent objects as spatio-temporally
continuous. First, he showed that below 8 months of age or so, an infant
reaching for a desired object will abort the reach if the object is hidden
under a cloth or cup, or if it is hidden behind a screen, in spite of the fact
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that the infant has the motor capacity to remove the barrier. Piaget
thought that this behavior showed that the infants did not represent the
object as continuing to exist when out of sight. Second, he argued (like
Quine) that the 8-month-olds’ success does not necessarily mean that they
do represent objects as existing spatio-temporally continuously. Indeed,
he discovered a second important phenomenon, the A-not-B error,
which he took as knockdown evidence that they do not do so. After
retrieving an object in hidden location A, if it is next hidden in location B,
the infant will search again in location A. Piaget’s interpretation was that
infants had simply learned a rule, “look where something has disappeared
and something interesting will happen,” rather than that they were tracing
the identity of the object through changes in location. It was not until 18
months or so, when infants could solve the hidden displacement pro-
blems, that Piaget (1954) was willing to credit them with a representation
of object permanence. In the hidden displacement problems, an object is
hidden by hand in location A, and the infant sees the closed hand move
from A to B. The infant looks first in A and succeeds on this problem
when, not finding the object at A, the child goes immediately to B. Piaget
argued that this behavior requires representing the absent object and
reasoning about its unseen movements.

These Piagetian observations are extremely reliable. They have
been replicated replicated countless times, and were even incorporated
into an infant “IQ test,” because reaching these milestones markedly later
than Piaget found sometimes reflects mental retardation (Bayley, 1969).
Nonetheless, recent methodological advances have provided a wealth
of data that reveal that Piaget underestimated the representational
capacities of young infants.

Intermodal Representations

The empiricists believed that learning the intermodal correspondences
between sensed properties of objects is the process through which
representations of objects are built. The relevant correspondences include
how visual appearance of texture is correlated with how that texture feels
when touched, how visual appearance of shape is correlated with how
that shape feels when touched, and so on, as well as correspondences
between visually specified locations and the effects of reaching to
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proprioceptively specified locations. For the empiricists, there was
nothing more to object representations than representation of such
correspondences. Piaget disagreed with the empiricists on the issue of
whether representations of objects can be cashed out in sensory and
spatio-temporal vocabulary, but he agreed with them that intermodal
representations such as those listed above had to be learned and that this
learning is an essential part of the process through which nonperceptual
representations of objects are built.

The empiricist position misses the mark in two ways. First, even once
all those intermodal representations are formed, infants still would not
have representations that go beyond sensory vocabulary—no representa-
tions of individuated, spatio-temporally continuous objects that exist
independently of themselves. Second, there is now massive evidence that
intermodal representations are innate and certainly not learned through
the associative mechanisms Piaget and the empiricists imagined. Neonates
orient visually to a location specified by a sound; neonates represent the
correspondence between visually and tactually specified shapes; and
neonates represent the correspondence between visually specified and
proprioceptively specified facial gestures. Two experimental results can
stand as examples from this large and convincing literature.

In the first example, Andrew Meltzoff and his colleagues allowed
neonates to suck on a strangely shaped pacifier—either a smooth cube or
a sphere with bumps all over it. These babies were only a few days old
and had never had anything in their mouths other than nipples and their
own hands. The babies were not allowed to see the pacifier. At the same
time (or later in some experiments), the infants were shown two pictures
—one of a cube and the other of a sphere with bumps. The babies
preferentially attended to the picture that matched the pacifier on which
they sucked. Thus, the infants innately recognized the correspondence
between the visually and tactually specified shapes/textures (Meltzoff &
Borton, 1979). A second example also comes from Meltzoff’s laboratory.
He and Keith Moore showed that neonates would imitate the facial ges-
tures of an experimenter (mouth opening, tongue protrusion). Chapter 5
considers the significance of this result for the characterization of core
cognition of human agents, but for now it is enough to show innate
representations of the correspondence between what another’s face looks
like and the actions and feel of their own face (Meltzoff & Moore, 1977;
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see Myowa-Yamakoshi, Tomonaga, Tanaka, & Matsuzawa, 2004, for a
replication with an infant chimpanzee).

These data, along with those reviewed above (“A Historical Aside”),
show that representations of people and objects, including their locations
in space, are specified intermodally in neonates. Infants do not have to
learn which sensations in one modality predict those in another—either
in the service of learning the associations that the empiricists took to
constitute depth representations nor the associations that they took to
constitute object representations.

Criteria for Individuation and Numerical Identity of Objects;
Object Permanence

My targets in this chapter are Piaget and Quine. My aim is to convince
you that infants have an innate capacity to represent objects as existing
independently from themselves and an innate capacity to quantify objects
just as do adults. I will proceed in two steps: first, by reviewing the
evidence that by 2 to 5 months of age infants have these capacities and
then by turning to the question of innateness.

By 2 months of age, infants represent objects as spatio-temporally
continuous. Not only do they represent objects as continuing to exist
behind barriers, they also take evidence of spatio-temporal discontinuity
as evidence for numerical distinctness. The methods that show this were
not available to Piaget. The literature I review in these early chapters
draws on patterns of looking to diagnose infants’ representations of the
world, especially experiments using the violation-of-expectancy look-
ing-time methodology. In this paradigm, infants watch as events unfold
before them. On some occasions, a magic trick is performed, creating an
impossible or highly improbable event. The robust result is that infants
look longer at improbable or impossible events than at ordinary ones,
presumably because violations of expectancy are attention grabbing.
Babies cannot react to a violation of the expected unless there is some
mismatch between their representation of a current outcome and their
representation of the antecedent events, and thus the researcher can use
patterns of elevated versus nonelevated looking times as a source of data
concerning the infant’s representations of the ongoing events. In chapters
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3 through 5 I consider further the nature of the infant’s representations of
these events. Here, I merely argue that infants’ representations of these
events are articulated in terms of a concept object, and they begin to
characterize that concept in terms of evidence concerning the extension
of the representation and its conceptual roles.

Renée Baillargeon, Elizabeth Spelke, and colleagues (1985) carried
out the first violation-of-expectancy study that was brought to bear on
infants’ representations of objects as continuing to exist when out of
sight. Four-month-old infants were habituated to a screen rotating 180!,
as shown in Figure 2.1a. After habituation, an object was placed in the
path of the screen on its downward trajectory, and one of two events
ensued. In possible outcomes, the screen was rotated until it touched the
object and then rotated back to its initial position (Figure 2.1b). In
impossible outcomes, the screen was rotated through the space occupied
by the object by the full 180! (Figure 2.1c). Infants looked longer at the

Habituation EventA

B

C

Baillargeon

Test Events 
     Possible Event

Impossible Event

Figure 2.1. Diagram of Baillargeon, Wasserman, & Spelke (1985) rotating screen
paradigm. a: habituation events. b: possible outcomes. c: impossible outcomes.
Reprinted from Baillargeon, R., Spelke, E. S., & Wasserman, S. (1985). Object
permanence in 5-month-old infants. Cognition, 20, 191-208, with permission from
Elsevier.

The Initial Representational Repertoire: The Empiricist Picture 41



impossible outcome than at the possible one. Later studies revealed this
pattern of results in infants as young as 2 months of age. These data were
the first to suggest that very young infants represent an object placed
behind a barrier to exist even when out of sight, as well as that infants’
representations of object motion are constrained by the principle that one
object cannot pass through the space occupied by another.

I more fully illustrate the logic of violation-of-expectancy studies
with another design from Spelke’s laboratory (Spelke, Kestenbaum, &
Simon, 1995). This study was also aimed at exploring whether young
infants represent objects as continuing to exist when out of sight. It is
particularly relevant here for it raises the issue of how babies individuate
objects and trace numerical identity over time, thus bearing specifically
on Quine’s claims concerning the quantificational capacities of pre-
linguistic human infants.

Figure 2.2a schematically depicts an event shown to infants in this
typical violation-of-expectancy looking-time experiment. Two screens
are placed on an empty stage, and two objects are brought out, in
alternation, from the opposite sides of the screens and then returned
behind them. The two objects are never simultaneously visible, and no
object ever appears in the gap between the two screens. In some studies,
infants are fully habituated to these events; in other studies, they merely
are familiarized to them by showing some number of iterations. In full
habituation, infants watch these events until their interest in them
declines by some preset ratio (e.g., to the point that their final looking at
the event is half the level of their initial looking times). The question we
want to pose to infants is: How many objects are involved in this event?
For adults, the answer is unambiguous: at least two. This event cannot
consist of a single object going back and forth because its path would be
spatio-temporally discontinuous; it would have to dematerialize behind
the right-hand screen and rematerialize behind the left-hand screen.

We ask infants how they represent the events by removing the
screens and showing them one of two outcomes: the expected (to adults)
outcome of two objects, or the impossible outcome of just one object
(thanks to a simple magic trick; one of the objects is surreptitiously
removed through a trapdoor in the rear of the stage). Then the stage is
cleared, the familiarization event repeated, and the other test outcome
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revealed. Usually in these experiments there are three pairs of possible/
impossible trials, alternating, with order counterbalanced across infants.

In these studies, infants look reliably longer at the impossible outcome
of one object than at the expected outcome of two (see Figure 2.3a for
typical data; Xu & Carey, 1996). These are the only actual data (the
numbers) from an infant violation-of-expectancy looking-time study I will
present in this book. (For most experiments, I present the pattern of data

Screens introduced

A B

Object 1 brought out.

Object 1 returned.

Nothing appears on screen

Object 2 brought out.

Object 2 returned.

Expected: two objects. Unexpected: one objects.

Screens introduced

Object 1 brought out.

Object 1 returned.

Object 1 crosses.

Object 1 brought out.

Object 1 returned.

Expected: two objects.Unexpected: one object.

Figure 2.2. Diagram of the Spelke, Kestenbaum, & Simons (1995) split-screen
spatio-temporal continuity paradigm. A: discontinuous motion condition. B: con-
tiuous motion condition. Redrawn from Spelke, E. S., Kestenbaum, R., & Simons,
D. J. (1995). Spatiotemporal continuity, smoothness of motion and object identity in
infancy, with permission from the British Journal of Developmental Psychology, 13(2),
113–142. ª The British Psychological Society.
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only qualitatively.) I present the numbers here to illustrate for those of you
who have never read a technical paper using this method what exactly is
meant when I say that infants looked longer at one type of outcome than
at another (truth in advertising). Notice that the difference in looking
times to the expected outcome (two objects) and the impossible outcome
(one object) is small—less than 2 seconds, averaging across the 16 babies
who were tested. Still, this is a very reliable result. Of 16 babies, 13 showed
this pattern, and those who looked longer at the expected outcome showed
a smaller difference in looking times between the two outcomes than did
those who looked longer at the impossible outcome. Statistical analyses
allow us to distinguish this pattern of data from random responding. Fur-
thermore, this very pattern of data has been replicated many times. All of
the looking-time studies I use for my arguments in this book have these
characteristics: reliable and replicable differences in looking times between
the expected and unexpected outcomes.

Of course, one must consider alternative explanations for any given
pattern of results. In this case, perhaps infants are not representing the
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Figure 2.3. Ten-month-old infants’ looking times during the test trials in the
split-screen spatio-temporal continuity study (Xu and Carey, 1996). Reprinted
from Xu, F., & Carey, S. (1996). Infants’ metaphysics: the case of numerical identity.
Cognitive Psychology, 30, 111–153, with permission from Elsevier.
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path of the object(s) emerging from behind the screen at all. Perhaps the
most salient aspect of these arrays during the familiarization part of the
experiment is that there are two screens. The preference for one object in
the outcome arrays might be a novelty preference: an array of one object
is more novel, relative to the two-screen familiarization arrays, than is an
array of two objects. This alternative hypothesis requires that infants
distinguish arrays of one object from arrays of two objects, but it does not
require that they represent the objects as continuing to exist behind the
screen, nor that they use evidence regarding spatio-temporal continuity
as a basis for computations concerning numerical identity.

A control for this alternative is to show the object appearing in the
gap during familiarization (Figure 2.2b). The simplest interpretation of
this event is that it involves a single object going back and forth behind
the screens, and indeed, that is the interpretation 10-month-old infants
apparently prefer. When the screen is removed and the outcomes
revealed, infants now look longer at the two-object outcomes than at the
one-object outcomes (Figure 2.3b). The differentiation of patterns of
looking in the discontinuous event and the continuous event shows that
infants indeed analyzed the paths of the object(s) emerging from behind
the screens and established representations of two objects in the two-
object events on the basis of spatio-temporal discontinuity.

The original experiment using this design was carried out by
Elizabeth Spelke and her colleagues with 4-month-old infants. Andréa
Aguiar and Renée Baillargeon (1999, 2002), using essentially the same
method, have shown that 2-month-old infants also expect objects to
move on spatio-temporally continuous paths, even through occlusion.

Karen Wynn’s (1992b) famous “addition/subtraction” experiments
support the same conclusions: that infants use evidence of spatio-temporal
discontinuity as a basis for individuating objects, and that they represent
hidden objects as existing behind screens. Wynn used the violation-of-
expectancy looking-time paradigm to explore whether infants could
update a representation of a hidden object or objects when additional
objects were added or subtracted from the set. Her first study tested
5-month-olds on 1 þ 1 ¼ 2 or 1, 2 – 1 ¼ 2 or 1, and 1 þ 1 ¼ 2 or 3
events. Take 1 þ 1 ¼ 2 or 1 as an example. The familiarization events
were as in the top panel of Figure 2.4a. Infants watched as a single object
was placed on an empty stage, and a screen was rotated up that hid the
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object. Then the infants watched as a hand brought in a second object and
as the hand was withdrawn empty. The screen was then lowered,
revealing either the expected outcome of two objects, or the unexpected
outcome of one object. Looking times to outcomes of one and two
objects in this condition were contrasted with those from the 2 – 1 ¼ 2 or
1 condition (Figure 2.4b, in which case, the two-object outcome is
unexpected and the one-object outcome is expected). Infants’ patterns of
looking were different in the two conditions; in the subtraction condition
they looked reliably longer at the two-object outcome, whereas in the
addition condition they did not. Wynn also found that infants succeeded
in the 1 þ 1 ¼ 2 or 3 condition, looking longer at the unexpected
outcome of three objects. Infants’ attention is drawn whenever any
number of objects other than precisely two is revealed after a 1þ 1 event.3

The implications of these results for our understanding of infants’
representation of number will be explored in chapter 4; here, I wish to
emphasize their implications for the Quinian/Piagetian position. To
succeed on Wynn’s tasks, infants must represent the object as continuing
to exist behind the screen. Furthermore, because the objects are physi-
cally identical, the child must use spatio-temporal evidence as a basis for
individuation; the infant has no other information relevant to whether
the second object is numerically distinct from the first. In the 1þ 1 event,
the infant must represent the object behind the screen, use the fact that
the object being introduced in the hand is spatio-temporally distinct from
that one, and thereby take it to be a numerically distinct object, and
update the representation of the hidden array by including a represen-
tation of a second hidden object.

Not only do these experiments reveal that infants expect objects to
be spatio-temporally continuous, they also show that infants’ object
representations are governed by criteria for individuation and numerical
identity. Contrary to Quine, infants command the logic of divided ref-
erence before they have learned the quantificational apparatus of their
natural language; they distinguish one object seen on different occasions
from two numerically distinct objects.

Aside: Why Do Infants Fail on Search Tasks?

Remember, Piaget’s evidence that infants do not represent objects as
continuing to exist in the absence of current sensory evidence of them
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Screen comes up.

Object placed in case.

Sequence of events 1 + 1 = 1 or 2

Second object added.

Hand leaves empty.

Screen comes up.

Object placed in case.

Sequence of events 2 – 1 = 1 or 2

Empty hand enters.

One object remove.

Revealing two objects. Revealing one object. Revealing one object. Revealing two object.

Screen drops. Screen drops. Screen drops. Screen drops.

Figure 2.4. Diagram of Wynn (1992) addition/subtraction paradigm. 1 þ 1

condition and 2 – 1 conditions. Redrawn from Wynn, K. (1992b). Addition and
subtraction by human infants. Nature, 358, 749–750, with permission from
Macmillan Publishers Ltd.
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was that they failed to retrieve them when hidden. But I have just
reviewed the evidence that by 2 months of age, at least, infants represent
objects as spatio-temporally continuous, tracking individual objects
through space and time, even when occluded. Why then, do they fail in
search tasks like the simple object-permanence tasks or the versions that
reveal the A-not-B error?

There are two broad types of explanations for the failure on
Piagetian tasks in the face of success on the looking-time tasks, and these
are not mutually exclusive. First, any problem we set before an infant
requires many different capacities. A failure on a given task may reflect
the lack of some capacity other than the one that is the target of our
interests. For example, many researchers have noted that the Piagetian
tasks differ from the looking-time studies in requiring means-ends
planning and various executive functions supported by the frontal cortex
(maintaining a representation in short-term memory, inhibiting com-
peting responses). These processes have a developmental course that is
partly independent of the capacity to represent objects. The second
explanation for earlier success on the looking-time tasks than on the
reaching tasks begins with the observation that the capacity to represent
some aspect of the world is not an all-or-nothing matter. Representations
are graded in robustness or strength, are constructed in real time, and are
subject to multiple interacting influences during the processes of con-
struction (Munakata, McClelland, Johnson, & Siegler, 1997; Thelen,
Schoner, Scheier, & Smith, 2001; Uller, Carey, Huntley-Fenner, & Klatt,
1999). These interacting influences guarantee that success on a wide
range of tasks all putatively drawing on a common representational
capacity will be task-dependent. Furthermore, there are many different
visual and motor maps of the world in the nervous system, and it is
possible that the representations that play a role in guiding search differ in
some respects from those that guide eye movement. For example, Yuko
Munakata and her colleagues suggested that it is possible that more robust
representations are required to support reaching than to evaluate con-
sistency of visual models of the world.

Although it is easy to see how explanations like these might account
for failures on some tasks in spite of the infants’ having the representa-
tional capacity seemingly needed for those tasks, it is not easy to find
evidence for any particular version. It is not impossible, though. For the

48 The Origin of Concepts



sake of illustration, let’s see how some of these ideas play out in under-
standing the developmental course of the A-not-B error, which wanes
between ages 8 and 12 months or so.

Possible Explanation 1: Frontal Cortex Maturation

Adele Diamond and Patricia Goldman-Rakic offered an explanation of
the first type—of the failure of young infants in the A-not-B task, in spite
of the capacity to individuate and track objects through occlusion—in
terms of a lack of a necessary prerequisite for task performance (Diamond,
1991; Diamond and Goldman-Rakic, 1989). Diamond and Goldman-
Rakic began with the observation that the A-not-B task closely resembles
a task used to diagnose frontal lobe function in monkeys—delayed
response (DR). In DR, an item (usually food) is hidden in one of two
wells, a delay is imposed in which the animal is not allowed to orient
toward the correct well, and the animal is then allowed to search for the
item. As in the A-not-B task, a crucial determinate of success in DR is
whether the food in the immediately previous trials was hidden in the
same well as in the current trial or the opposite one.

There is massive evidence for frontal lobe involvement in DR.
Lesions in prefrontal cortex (specifically dorsolateral prefrontal cortex) of
adult monkeys disrupt performance in DR tasks. Monkeys with such
lesions can still succeed at the task when there is no delay, but performance
falls apart at delays as short as 2 seconds. Lesions in other memory or visual
systems (such as the hippocampus or parieto-temporal areas) do not affect
DR. Also, there is excellent evidence for a maturational contribution to
the development of DR during infancy. In Rhesus monkeys, 1.5-month-
old infants perform on DR as do adults with lesions in the dorsolateral
prefrontal regions. Between this age and 4 months of age, the delay that
can be tolerated increased from 2 seconds to 10 seconds or more;
4-month-old infant Rhesus monkeys perform as well as do adults with
intact prefrontal cortex. That maturational changes in prefrontal cortex
play some role in this improvement is shown by the fact that lesions in this
area at 1.5 month preclude the developmental improvement in DR, and
the same lesions at 4 months have the same effect on performance on DR
as do such lesions in adulthood—to wit, they disrupt so that performance
falls to the level of 1.5-month-old infants.
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Diamond and Goldman-Rakic suggested that the maturational
change in prefrontal dorsolateral cortex taking place in infant Rhesus
monkeys between ages 1.5 and 4 months occurs in infant humans
between ages 7.5 and 11 months, and it at least partially underlies the
developmental changes seen in Piaget’s Stage IV of the object concept.
Diamond gave the same version of the A-not-B task to human infants at
this age, to infant Rhesusmonkeys, and to adult Rhesusmonkeys who had
been lesioned in the prefrontal dorsolateral cortex. She found that the
developmental changes in human infants matched, in parametric detail,
those of the monkeys, except that the development was a bit slower
in humans (over 2.5 months in monkeys, over 4.5 months in humans).
In both species, the delay at solving the A-not-B task increased from
2 seconds at the youngest age to 10 seconds or more at the oldest age. In
both species, errors were predominantly on trials in which the correct
choice differed from the correct choice on the previous trial (i.e., switch
trials). In both species, details of the infants’ behavior on the switch trials
suggest they represented where the objects was; sometimes they did not
even look in the well they had uncovered before reaching for the correct
well, and sometimes they stared at the correct well even as they reached
for the incorrect one. These behaviors occurred at comparable rates in
the two species. Finally, the adult Rhesus monkeys with lesions in the
prefrontal dorsolateral areas, as expected, failed the A-not-B task at delays
over 2 seconds (like the 1.5-month-old Rhesus and the 7.5-month-old
humans), and made errors predominantly in the crucial switch trials in
which the bait was placed in a different well from that of an immediate
preceding successful trial.

Diamond concluded that immaturity of dorsolateral prefrontal cor-
tex contributes to the 7.5-month-old’s failure on the A-not-B task.
Seeking convergent evidence for this conclusion, she reasoned that if
maturation of the structure underlies the parametric improvement on this
task between ages 7 and 12 months of age, then other tasks that diagnose
prefrontal dorsolateral function in primates should show a parallel course
of development. She confirmed this prediction in a series of studies of
babies reaching for objects in transparent Plexiglas boxes. Problems of
differential difficulty are posed for the infant as a function of where the
opening of the box is placed. Young infants (7.5-month-old humans,
1.5-month-old Rhesus) cannot solve this problem unless the direct line of
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sight between the infant and object is through an opening. If the opening
is to the side, for example, infants of both species of these ages keep
reaching directly for the object, hitting the Plexiglas wall, and trying
again and again until giving up in frustration. Diamond charted a series of
stages infants between 7.5 and 12 months go through before complete
success at this task; and she showed that infant Rhesus monkeys go
through parallel stages between ages 1.5 months and 4 months, and that
adult Rhesus monkeys with lesions in prefrontal dorsolateral cortex fail at
this task, performing like 1.5-month-old infants of their species.

There is no obvious conceptual similarity between the A-not-B task
and the Plexiglas box task. In the former, the object is hidden, and
memory is a critical component (performance is a function of delay). In
the latter, the object is visible through the box, so memory plays no role
whatsoever. What unifies these two tasks is their reliance on an intact,
functioning dorsolateral prefrontal cortex. Functionally, it is likely that
the aspect of executive function being tapped in both tasks involves
inhibiting a prepotent response (reaching along the direct line of sight in
the Plexiglas box task, repeating the previously successful reach in the
A-not-B task). Also, the prefrontal cortex is crucially involved in working
memory, a critical component of the A-not-B task. Diamond argues that
these are aspects of executive function supported by the prefrontal cortex,
and these are not required in the violation-of-expectancy looking-time
studies. Diamond’s work gives us evidence that the A-not-B error does
not reflect a limit in the infant’s representation of objects as spatio-tem-
porally continuous, continuing to exist when occluded but, rather,
reflects immature executive function that limits the means/end problem
solving of infants under 1 year of age.

Possible Explanation 2: The Dynamic Systems Account

In a series of influential writings, Esther Thelen, Linda Smith, and their
colleagues have discovered several new phenomena and have systema-
tized the empirical literature concerning the A-not-B error (e.g., Smith,
Thelen, Titzer, & McLin, 1999; Thelen et al., 2001). They argue that the
error could arise from complex interactions among the multifaceted
processes that enter into motor planning, processes that unfold over
time. Thelen, Smith, and their colleagues stress that whether the infant
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makes the error or not is dependent on many factors, such as how
many repetitions of hiding at A before the switch to B, the delay, the
salience of the object, the distinctiveness of the two locations, whether
the infant is in the same position during the A trials and the first B trials,
and so on. Their model makes such novel predictions (which have been
confirmed) as that the probability of the error will decrease if the child
changes posture between successive trials!

In Thelen’s model of motor planning, three distinct representations
are built up over time, each having its own dynamics (rate of buildup,
capacity for stability and self-maintenance, time course of decay), and
they interact in a common motor workspace to create a plan to reach to
A or B (or neither). The three distinct representations are (1) a repre-
sentation of the task environment (that establishes the locations of A and
B, and maintains them as distinct or as equally or differentially salient);
(2) a representation of the cued location of a given trial; and (3) a
representation of the previous movements, in which this representation is
influenced by the entire history of movements, highly weighting the
most recent ones. These representations are integrated in the process of
planning a movement; a movement to A or to B ensues when a threshold
of activity in the motor workspace is reached. The various context effects
discovered and reviewed by Thelen and Smith are modeled in terms of
parameters that influence the dynamics of the formation and mainte-
nance of each of the three types of representations in motor space, and
the developmental change between 8 months (A-not-B errors likely at
delays greater than a few seconds) and 12 months (A-not-B errors
unlikely, within a wide range of task parameters, at delays as long as
10 seconds) is modeled in terms of a change in a parameter called
cooperativity. Cooperativity reflects the differentiation within motor
space and the capacity for creating and maintaining a stable representation
of the cued location.

Although Thelen and Smith’s account differs from Diamond’s in
many respects, both place the A-not-B error in the context of the inter-
action of two different memories: memory for the cued location (or for the
object’s location) and memory of the past action. Memory of the past
action has a much longer time course of decay, the limits of which, as
Thelen et al. point out, have not been systematically studied. If the pro-
cesses that form and maintain the short-term memory of the cued location
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are fragile, an A-not-B error is thereby likely to occur. In sum, Thelen and
Smith, on the one hand, and Diamond, on the other, agree that the A-not-
B error arises from the interaction of object or location representations
with other representations involved in the planning of a reach.

Thelen, Smith, and their colleagues draw what seem to be stronger
conclusions than those outlined in the first explanation. They sometimes
deny the usefulness of the construct object representation or even
representation at all. I find this puzzling. Their own model explicitly
depends on three different types of representations: the task context, the
cued location, and past acts. That these representations are formulated
over motoric space, that they evolve over time, and that they interact in
complex ways does not make them nonrepresentations.

Although these models of dynamic systems crucially depend on
representations, the representations in this case are certainly sensori-
motor ones. At other places, Thelen and her colleagues argue that it
does not make sense to ask when infants “have” representations of
objects. They claim that this is a badly mistaken question because
representations are always manifested in behavior and thus their
expression is always subject to the dynamic interaction of many different
processes. This is undoubtedly true, and I will often rely on this fact in the
pages to come (e.g., in explaining infants’ failures on A-not-B tasks in
spite of their capacity for object representations!). But this observation
does not discharge the responsibility to account for the origin of the
capacity to represent objects. Either this capacity is innate or it is built by
some learning process, and such a learning process would necessarily
occur at some particular point in time.

It is true that representations of objects play no role in Thelen and
Smith models at all. The representations are representations of locations,
with strengths determined by stimulus salience and dynamic factors. The
only possible role for perceptual representations of the objects is that
their salience might affect the degree of activation of the location in which
they were hidden. In support of the claim that representations of objects
are playing no role in this task, Smith and her colleagues discovered that
infants will reach into the containers even when there are no objects in
them, and that merely waving one of the visible lids, or touching it, would
induce a reach into a particular one. That is, a wave or a touch would serve
as a specific cue to a location on a particular trial (Smith et al., 1999).
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It is not surprising that a model of the last stages of planning a reach is
formulated in a motor workspace that includes representations of loca-
tions, but it is also unlikely that a full model of the dynamics of the
planning, memory, and motivational processes that interact in deter-
mining a reach can dispense with representations of the goal of the reach
—a particular object. Could it be true that representations of specific
unseen objects do not ever guide reaches at the ages of children of the age
of the A-not-B error? I think not.

My colleagues and I have recently developed a search task that can be
used to explore object representations in 10- to 12-month-old infants.
Several studies using this method demonstrate that representations of
objects guide the reaches of 10- to 12-month-old infants (Feigenson &
Carey, 2003; Van de Walle, Carey, & Prevor, 2000). In this task, infants
are introduced to a box into which they can reach but cannot see. We
measure infants’ search behavior as a function of what they have seen
placed into the box. For example, on some occasions infants see two
objects placed into the box and on other occasions they see only one
object placed inside, after which the box is handed to the baby. There is
always only one object in the box (the other having been surreptitiously
removed on the two-object trials). The infant reaches in and retrieves the
object, and the measurement period of interest is that which follows.
Does the infant demonstrate, by his persistence of search, that he
represents a second object inside it? Success on this task is longer
searching on two-object trials because there should be a second object in
the box than on one-object trials because the only object the child saw
emerging from the box has been retrieved. Both 10- and 12-month-olds
succeed in this version of the task. Apparently, infants of this age can
represent the difference between one and two objects being in the box,
and their reaches into the box are guided by representations of the objects
hidden within it. Thus, a full model of the planning process must contain
representations of the hidden objects themselves, not only the locations
to which the child will reach.

Although I have criticized Thelen and Smith’s arguments against
mental representations in general, and their claims that it does not make
sense to ask whether infants’ “have” representations of objects, their
models provide insight into why infants with the capacity to represent
hidden objects make at the A-not-B error. Both Thelen and Smith’s
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work and Diamond’s provide detailed accounts of the complex processes
involved in tasks that are used to characterize infants’ representational
abilities (in this case, in Piagetian search tasks). Variables that influence
these processes can produce apparent failures on a given task even if
the representational capacity in question is in place. Of course, positive
evidence for that capacity is still required; in the present case, the positive
evidence that young infants have the capacity to form representations
with the content object derives from the looking-time studies reviewed
above.

Are Object Representations Innate?

I have argued that very young infants represent objects as spatio-
temporally persisting. The computations through which young infants
establish representations of objects embody criteria of individuation and
numerical identity. Contrary to Quine, a child does not need the ladder
constructed from the explicit quantificational devices of natural language
in order to create representations of objects that divide reference, that
distinguish between the same one and a different one. Contrary to Piaget,
a child does not need the full period of sensori-motor development (until
18 to 24 months) to create representations of enduring objects that exist
even when the child has no direct perceptual access to them. Quine’s and
Piaget’s specific accounts of the origin of the capacity to form object
representations cannot be right.

Still, the youngest age of participants in the violation-of-expectancy
looking-time studies reviewed so far in this chapter is 2 months. Is it
possible that younger babies’ representations are formulated over sensory
or perceptual primitives? Could the capacity to represent and quantify
over objects displayed in these looking-time experiments be built
between birth and 2 months of age? In the last pages of this chapter, I
present arguments that convince me that perceptual input analyzers that
yield representations of objects are most likely innate.

This question is particularly trenchant because there is one piece of
evidence from a looking-time paradigm that suggests that the capacity to
compute object representations is not innate. The phenomenon in
question is the capacity for amodal completion of single objects, two ends
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of which protrude from behind an occluder (see Figure 2.5a). This
phenomenon differs from those discussed so far in this chapter, for it does
not concern when infants represent whole objects that disappear behind
barriers as continuing to exist there. Nonetheless, at issue are the pro-
cesses that result in object individuation. Under what circumstances,
if any, does the infant establish a representation of a single, spatio-
temporally continuous (i.e., connected throughout) object extending
behind the barrier, rather than two numerically distinct objects? Philip
Kellman and Elizabeth Spelke used the violation-of-expectancy looking-
time method to answer this question (Kellman & Spelke, 1983). They
found that if the visible ends of the occluder move together, 4-month-
old infants establish a representation of a single object, as shown by the
fact that upon removal of the barrier, they look longer if a broken rod
(Figure 2.5b) is revealed than if a continuous rod (Figure 2.5c) is revealed.
Building on this work, Scott Johnson and Richard Aslin have shown

A

B C

Figure 2.5. Diagram of stimuli for the Kellman & Spelke (1983) broken rod
experiments. a: habituation stimulus (rod moves back and forth behind the screen). b:
two rod outcome. c: single-rod outcome. Redrawn from Kellman, P. J., & Spelke, E.
S. (1983). Perception of partly occluded objects in infancy. Cognitive Psychology, 15(4),
483–524, with permission from Elsevier.
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that 2- to 4-month-old infants are sensitive to almost all of the same
information that adults are in computing representations of a single rod in
this situation, but that 2-month-olds need more redundant information
than do 4-month-olds (Aslin & Johnson, 1996; Johnson & Aslin, 1995).

Newborns, however, are different. Alan Slater and his colleagues
found that newborn infants display the opposite pattern of looking times
(Slater, Morison, Somers, Mattock, & Brown, 1990). Habituated to the
array in Figure 2.5a, they look longer at the completed rod (Figure 2.5c)
than at the broken rod (Figure 2.5b), as if the former were a novel
stimulus for them. Slater’s findings have been taken to show that between
birth and 2 months of age, infants learn that common motion of two
visible portions of objects protruding from behind a barrier is likely to be
part of one and the same object.

There are, however, alternative explanations for the neonate’s failure
in the face of 2-month-olds’ success, other than that the processes that
create object representations are constructed through learning in the first
two months of life). Just as Diamond argued in the case of developmental
changes in the A-not-B error, it is possible that maturation of capacities
other than those that create object representations per se underlie the
change between newborns and 2-month-olds. Alternatively, it is possible
that neonates need more redundant information still, compared to
2-month-olds, just as 2-month-olds do compared to 4-month-olds, for
amodal completion, and that the pattern of looking reveals a familiarity
preference rather than a novelty preference. Upon meeting the habitua-
tion criterion, the neonates may still be in the process of building the
representation of a single object.

How might we decide between an explanation of the developmental
change that involves learning that a single object is likely to be found
behind the barrier and one that involves developmental changes in
processes that are inputs to an innate computational device? Three
empirical considerations lead me to favor the nativist view that the
capacity for amodal completion is the product of evolution and it does
not have to be constructed through learning processes.

First, it is not hard to imagine ancillary capacities that might await
development before infants can succeed at completing the rod behind the
barrier. They must notice the correlated motion of the two ends of the
rod: this is the input to the computation that creates a representation of
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the single rod. Young infants have a notorious difficulty deploying their
attention. Two sources of data suggest that one problem faced by very
tiny babies is just this failure to notice the correlated motion: Two-
month-olds are less likely to complete the rod behind the barrier if
the barrier is wider, and increasing width plausibly makes it more difficult
to notice the common motion (Condry, Smith, & Spelke, 2001). Con-
firming the necessity of doing so, eye-tracking studies show that
3-month-olds complete the rod only if they scan between the two ends
of the rod during familiarization (Amso, Davidson, & Johnson, 2005).
The Amso et al. study showed that young infants’ attention is captured by
the motion of one portion of the rod along the edge that specifies
the occluder.

Second, even stronger than evidence consistent with some possible
way of explaining away a failure is positive evidence that neonates have
the capacity. A recent study of neonates presented the stimuli strobo-
scopically, showing the end points of the movement only and thus
removing interference from the encoding of relative motion along the
edges. The neonates generalized habituation to the complete rod, just as
do 2-month-old and older infants (Valenza, Gava, Leo, & Simeon, 2004).
Thus, amodal completion appears to be innate in humans.

Finally (and this is indirect evidence), the capacity for amodal
completion is innate in chickens (Regolin & Vollortigara, 1995). Neonate
chicks imprinted on a red triangle, partially hidden behind a barrier, huddle
next to a completed triangle, rather than on a broken one, the first time the
barrier is removed (Figure 2.6). These newborn chicks had no opportunity
to learn what stimulus conditions predict a complete figure as opposed to a
broken one under these circumstances. Indeed, even the spatio-temporal
continuity implicated in object permanence is the output of innate per-
ceptual analyzers in chicks. Newborn chicks, imprinted on a ball, which
have never in their lives seen any object go behind a barrier (and thus could
not have learned about spatio-temporal continuity), search behind a screen
for the ball the first time it disappears there. They even avoid the A-not-B
error! Of course, that object permanence is innate in baby chickens does
not mean it is innate in human babies. Nonetheless, these studies provide
an existence proof that it is possible for the capacity to represent objects as
spatio-temporally continuous, even under conditions of occlusion, to be
manifest without learning.
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Even if we did not have these empirical results in hand, other
considerations would bear on deciding between the learning account of
the change in performance between 0 and 2 months of age and the
alternatives. Those who favor a learning account of the change between
birth and 2 months of age need to sketch one. Quine’s linguistic boot-
strapping process was his answer to this question, and that hypothesis is
already ruled out by the existence of object representations and the
capacity for divided reference in clearly prelinguistic infants. What
learning process could create representations of complete objects that
persist behind barriers taking only perceptual primitives as input?
Similarly, how could infants learn that whole objects that disappear
completely behind barriers continue to exist there? It is easy to see how
infants could learn statistical regularities stated over perceptual and

Testing Conditions

30

40

50

60

70

Pr
ef

er
en

ce
 (%

) f
or

 th
e 

co
m

pl
et

e 
tr

ia
ng

le

Rearing Object :

Figure 2.6. Preference for the complete (or amodally complete) stimulus of each
comparison pair. Group means þ/- standard error depicted. From Regolin &
Vallortigara, 1995. Regolin, L., & Vallortigara, G. (1995). Perception of partially
occluded objects by young chicks. Perception & Psychophysics, 57(7), 971–976.
Reprinted with permission from Psychonomic Society, Inc.
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spatio-temporal primitives—noting that certain patterns of occlusion
predict certain patterns of reappearance, for example, or that certain
patterns of common motion predict spatio-temporal continuity of the
elements that are moving together. Statistical analyses—for example, of
the sort so well modeled in connectionist architectures—could accom-
plish such learning; and indeed, there are successful models that do just
that (e.g., Munakata et al., 1997; Mareschal, Plunkett, & Harris, 1999).
However, these generalizations are not stated over object representations.
Furthermore, even if they were, they would not constitute representa-
tions of object permanence unless the system represents the object as the
same one that went behind the barrier. As Gary Marcus (2001) points out,
either the current simulations cannot do so or they build in this capacity
from the beginning, thus accomplishing interesting learning, but not the
learning of spatio-temporal continuity itself . Similarly, even if general-
izations about common motion and connected, filled spatial regions were
learned, they would not constitute amodal completion of an object unless
they represented the completed object as the same one as unites the parts
that had been visible before. If it is true that object representations cannot
be expressed in a sensori-motor or perceptual vocabulary, there is a
serious learnability issue of how they could be learned from statistical
generalizations over that vocabulary.

The debates over whether connectionist models could take per-
ceptual input and construct representations of objects that embody cri-
teria of individuation and numerical identity engage the learnability issue
in just the right way. Any learning model that could accomplish this feat
would defeat in principle a learnability argument that object repre-
sentations cannot be built from perceptual primitives. It is still an open
question whether one can imagine, in principle, a learning mechanism
that could accomplish the task. Of course, even if we could imagine one,
we wouldn’t know that we were right. It would still be a logical and
empirical possibility that object representations are innate in human
infants, just as representations of the night sky are innate in nestling
indigo buntings. A proposal for a plausible learning mechanism would be
an important first step toward an empirical investigation of whether
object representations could be built from perceptual primitives, for such
a proposal would certainly make testable empirical predictions. But even
a successful proposal for a plausible learning mechanism would not
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settle the issue; we’d still have to see whether learning in fact proceeds
in the hypothesized manner.

In the following pages, I appeal to learnability considerations, as well
as evidence that capacities are innate in other species, in my arguments
that a given representational capacity might be innate in humans. I also
appeal to one additional type of empirical argument. One source of
evidence concerning the content of the representations that underlie
infants’ performance in any given task is their inferential role. What
inferences are embodied in the constraints under which infants apply
these representations in ambiguous situations? Elizabeth Spelke has
specified principles other than spatio-temporal continuity that constrain
young infants’ representations of three-dimensional objects, and has
pointed out that the principles, in concert, determine still other con-
straints on object interactions. For example, Spelke notes that infants
represent objects as bounded and what she calls coherent (filled in at
every point), as well as continuously persisting. These two principles
(continuous spatio-temporal persistence and coherence) entail that one
solid object cannot pass through another. For object A to pass through
object B, object B would have to be noncoherent (like water), or object
A would have to dematerialize upon hitting object B and rematerialize
on the other side.

This set of interrelated constraints on infants’ representations will take
center stage in chapters 3 through 6. Here, I wish to illustrate how these
facts might bear on the nativist/empiricist debate with respect to the origin
of any target representational capacity. The idea is simple: if observed
developmental changes are accomplished by statistical generalizations over
sensory representations, one would expect it to be piecemeal, depending
on the statistical information available in the input. And certainly, much
learning in infancy is exactly of this sort. If, however, some developmental
changes result from the maturation of capacities that prevented anteced-
ently existing representations from being activated, one would expect that
as soon as these capacities mature, the full integrated representational
system would be manifest. Observation of the latter pattern supports the
nativist position. Here, I sketch how this argument might play out in the
case in question: whether object representations are innate or constructed
from sensory primitives. I ask whether infants provide evidence for sen-
sitivity to solidity at the same age as they first provide robust evidence of
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Test Events
Open-container Condition

Closed-container Condition

Figure 2.7. Diagram of test trials in the Hespos and Baillargeon (2001) solidity experiment. Top panel, cylinder inserted into container open at the
top. Bottom panel, cylinder apparently inserted through solid closed top. Reprinted from Hespos, S., & Baillargeon, R. (2001). Reasoning about
containment events in very young infants. Cognition, 78, 207–245, with permission from Elsevier.



amodal completion (Figure 2.5) and spatio-temporal continuity (Figures
2.1–2.4)—namely, at 2 months of age.

Three separate series of studies indicate that 2-month-old infants look
longer at events in which one object has apparently passed through the
space occupied by another than they do at otherwise identical events in
which object motions do not violate the constraint of solidity (Baillar-
geon, 1987; Hespos & Baillargeon, 2001; Spelke, Breilinger, Macomber,
& Jacobsen, 1992). To take just one example, Sue Hespos and Renée
Baillargeon showed one group of 2-month-old infants a hollow cylinder
and another group an identical cylinder closed on top (Figure 2.7). The
cylinder was then placed upright, such that the infant could not see the
top. A rod was then picked up and slowly inserted into the cylinder, a
possible event in the hollow cylinder case, violating solidity in the closed
cylinder case (for the rod would have to pass through the solid top). The
infants looked longer at the latter, impossible event. Recall that 2 months
is the earliest age at which infants are adultlike in the Kellman and Spelke
amodal completion paradigm and in the split-screen object individuation
paradigm. It seems that as soon as young infants are able to form object
representations under the conditions of these studies, their representations
are constrained to reflect boundedness and spatio-temporal continuity in
complex ways. It is unlikely that piecemeal learning of local statistical
regularities could accomplish the coherently interrelated representations
observed by 2-month-old infants.

Conclusions

I have argued here that the Piagetian/Quinian view of the young infant’s
representational capacities being exhausted by a perceptual similarity
space, or a set of sensori-motor primitives, is most probably wrong. The
argument had three steps. First, I argued that representations of object
cannot be stated in the vocabulary of perception. Second, I reviewed
some of the evidence that that young infants represent objects themselves
as spatio-temporally continuous, quantifying over these representations as
do adults. Third, I considered whether infants’ performance in the
experiments might better be explained in terms of generalizations stated
over a perceptual vocabulary. This is still a hotly debated issue, but

The Initial Representational Repertoire: The Empiricist Picture 63



evidence concerning the inferential role of infants’ representations,
together with learnability considerations, lead me to favor the richer
interpretation of the currently available data.

Grant, for the moment, that infants’ representations of the world
reflect an ontology of individuated, spatio-temporally continuous,
middle-sized, middle-distanced objects that interact with each other
according to the laws of contact causality. Grant, contrary to Quine, that
the capacity to quantify over objects is not a cultural construction and
does not result from a bootstrapping process that involves learning the
quantificational devices of natural language. Grant, contrary to Piaget,
that the capacity to represent objects as existing independently of the
child, as spatio-temporally continuous even through occlusion, does not
await the end of the sensori-motor period of development. Granting all
this still tells us little about what kinds of representations, what kinds of
knowledge, we are talking about. What is the format of representation?
What knowledge is explicit and what is embodied in the computations
carried out over explicit representations? What happens to infants’ rep-
resentational capacities in the course of development—how are they built
upon and how are they transformed? The core cognition hypothesis
stakes out a position on these issues. Chapters 3 through 5 spell out the
core cognition hypothesis, continuing with the example of object
representations (chapter 3), and then turning to number (chapter 4) and
agent (chapter 5) representations. These chapters further differentiate
core cognition from perceptual representations and also begin to dis-
tinguish core cognition from intuitive theoretical knowledge.

NOTES

1. This aside draws heavily from the excellent discussion of the history of this
debate in Spelke & Newport, 1998.

2. No empiricist actually gave a definitional decomposition of the concept object
in terms of perceptual primitives—as Piaget and Quine saw clearly, this would be
impossible. Rather, what they had in mind was that our concept of object was
nothing but a set of associations between the different sensory impressions of the
objects of our experience.

3. As is the case with all of the experiments I draw on in my argument, Wynn’s
results have been replicated in many laboratories: With 4-month-olds, Simon,
Hespos, & Rochat (1995) and Koechlin, Dehaene, & Mehler (1998); with

64 The Origin of Concepts



7-month-olds, Feigenson, Carey, & Spelke (2002); with 8-month-olds, Uller,
Carey, Huntley-Fenner, & Klatt (1999). Koechlin et al.’s study is particularly inter-
esting. The objects behind the screen were on a rotating plate, such that the infants
could not predict the spatial layout of the outcome arrays. This shows that infants
were not merely creating a model of the spatial array, and were reacting when there
was a new position occupied or when a previously occupied position was empty.
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3
Core Object Cognition

Chapter 2 challenged a widely shared assumption about the ontogenetic
origins of human conceptual understanding: the assumption that the
initial stock of human mental representations is limited to perceptual or
sensori-motor primitives. In this chapter, I begin to develop an alterna-
tive to the empiricist picture of the human initial state. To begin, let me
say that I have been influenced by the work of many psychologists,
especially Renée Baillargeon, Randy Gallistel, Rochel Gelman, Alan
Leslie, and Elizabeth Spelke.1 I agree with these writers that the cognition
of humans, like that of all animals, begins with highly structured innate
mechanisms designed to build representations with specific content. I call
these real-world content domains “core domains,” and I call the mental
structures that represent them “core cognition.”

What’s at Stake: Characterizing the Architecture of the Mind

Core cognition has several properties. First, core cognition has rich
integrated conceptual content. By this I mean that the representations in
core cognition cannot be reduced to perceptual or sensori-motor pri-
mitives, that the representations are accessible and drive voluntary action,
and that representations from distinct core cognition systems interact in
central inferential processes. Second, core cognition is articulated in terms
of representations that are created by innate perceptual input analyzers.
Natural selection has constructed these analyzers specifically for the
purpose of representing certain classes of entities in the world, and this
ensures that that there are causal connections between these real-world
entities and the representations of core cognition. Third, the perceptual
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analysis devices that identify the entities that fall under core domains
continue to operate throughout life. Core cognition is elaborated during
development because core cognition systems are learning devices, but it is
never rendered irrelevant. It is never overturned or lost, in contrast to
later developing intuitive theories, which are sometimes replaced by
subsequent, incommensurable ones. Fourth, systems of core cognition
are domain-specific learning devices (remember the indigo buntings
learning to identify the azimuth, cited in chapter 1). Fifth, some core
cognition (including that of objects) is shared by other animals. At least
some early developing cognitive systems in humans have a long evolu-
tionary history. And sixth, the format of representation of core cognition
is iconic rather than involving sentence-like symbol structures.

Understanding the mind requires characterizing its architecture—its
parts and their relations to each other. It is an empirical claim that there are
systems of representation that exemplify the six properties listed above.
Later-developing explicit knowledge differs from core cognition in every
single one of these six properties, so if the core cognition hypothesis is
correct, the theories all the way down hypothesis cannot be. Similarly,
because core knowledge is organized into distinct systems of representa-
tion for distinct domains of experience, it presents a different picture of
cognitive architecture from one that is exhausted by a developmentally
primitive vocabulary of perceptual features and domain-general learning
mechanisms, such as those captured in many connectionist architectures.

It is an understatement to say that not all researchers concerned with
the infant mind agree with my characterization of the initial state. The
hypothesis that young infants’ representational capacities include several
systems of core cognition—as core cognition is characterized in these
pages—is highly controversial. As mentioned in chapter 1, some of the
controversy derives from differences in scientific taste. Psychologists
are drawn to the empiricist characterization of the initial state, either as a
general theory (as in the case of Piaget or Quine), or in particular cases, as
when Les Cohen seeks to explain the development of causal repre-
sentations as learning contingencies among sensory primitives (Cohen &
Chaput, 2002), or as Yuko Munakata and her colleagues seek to explain
the development of object permanence in terms of learning contingencies
among sensory primitives (Munakata, McClelland, Johnson, & Siegler,
1997). Some of the controversy is empirical. Many people prefer leaner
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interpretations of the data I will offer in favor of core cognition, seeking to
explain them in terms of generalizations that infants have formulated over
sensory or perceptual primitives (e.g., Bogartz, Shinsky, & Speaker, 1997;
Haith, 1998; Haith & Benson, 1998). One goal I have in chapters 2
through 7 is to make the case for a richer picture of the initial state.

The core cognition hypothesis provides part of the solution to
our quest for the origin of human concepts, for it consists of systems of
innate conceptual primitives. But it also provides a challenge, for later-
developing conceptual knowledge differs so radically from it. Chapters 7
through 12 take on this challenge, explaining how human beings, and
only human beings, have the capacity to transcend core cognition.

Object representations exhibit all of the hypothesized properties of
core cognition; in demonstrating this I both illustrate the characteristics of
core cognition and give a sense of the evidence for it. Chapter 2 presented
arguments that object representations satisfy the first two properties of
core cognition: they are conceptual and they are created by innate input
analyzers. I will return to both of these features of core cognition in this
chapter as well; here, I concentrate on the other four. I begin with a
property of core cognition not emphasized at all in chapter 2: the
representations that articulate core cognition of objects continue to
operate throughout life. This feature is central to the core cognition thesis,
for it is one of the respects in which core cognition differs from explicit
theoretical knowledge. Theories change, sometimes radically, such that
even the deepest ontological commitments are revised. Indeed, theories
may and do overturn, at an explicit level, tenets of core cognition, even
while core cognition representations are also still computed. For example,
the belief that objects are made up of particulate matter is not part of core
cognition and even violates the solidity constraints discussed at the end of
chapter 2. Matter can and does pass through objects such as people and
tables, and anybody who has an understanding of modern physics knows
this. So what is the evidence, then, that core object cognition is constant,
in the face of changes in our explicit theories of objects?

Continuity

That infants and adults both apparently have representations with com-
mon content (e.g., object) is not sufficient to establish continuity. Both
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indigo buntings and human navigators have representations that refer to
the night sky and the azimuth, but we would hardly be tempted to think
that the representations of the two are identical. How do we individuate
systems of representations, so we can address the question of whether the
buntings’ representations of the azimuth are the same as a sailor’s—or that
infants’ representations of objects are the same as adults’?

The creation of any particular type of representation draws on par-
ticular input, and these representations enter specific computations over
that input. Those computations have peculiarities that leave traces in
behavioral data—traces I shall call “signatures.” The argument for con-
tinuity rests on identical psychophysical signatures across developmental
or evolutionary time.

Consider for a moment the problems that drive the work on adult
object representations. Sensory input is continuous. The array of light on
the retina is not segregated into individual objects. Yet distinct individuals
are provided by visual cognition as input into many other perceptual and
cognitive processes. It is individuals we categorize into kinds; it is indi-
viduals we reach for; it is individuals we enumerate; it is individuals
among which we represent spatial relations such as “behind” and
“inside”; and it is individuals that enter into our representations of causal
interactions and events. The study of the perceptual mechanisms that
create representations of objects individuated from the background has a
considerable intellectual history, at least back to the Gestalt psychologists,
continuing today in the study of mid-level object-based attention (see
Scholl, 2002, for an excellent tutorial review).

Object representations have a privileged role in human cognition. It
turns out that although attention may be directed to locations, it is often
the case that attention is allocated to individual objects that are traced
through time and space. These mid-level representations of objects are
stored in working memory and commonly called “object-files.” Daniel
Kahnemann, Anne Treisman, and Brian Gibbs (1992) coined this term in
a paper that reported experiments that demonstrated some of the
computational work object files do. They exposed participants to letters
in boxes, after which the boxes moved to new locations (see Figure 3.1).
The participants’ task was to say whether the letter that appeared in one
of the two boxes in the test trial had been one of the original two exposed
letters (which box it was in originally was to be irrelevant). What primed
(or interfered with) their judgment was whether the letter in the spatio-
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temporally defined object was the same or different from before, not
whether the letter’s location in space as the currently revealed letter was the
same or different from before. Apparently, the participants established
representations of individual objects (object-files) and bound features to
them (in this case, the identity of the letter contained within), the bound
features remaining in working memory as participants traced the identity
of the objects through time on the basis of their spatio-temporally
continuous paths.

Research on object-files and on object-based attention has yielded
three salient psychophysical signatures of the computations that create and
operate these representations. These signatures include: (1) privileging
spatio-temporal information over property/kind information in individ-
uation and computations of numerical identity; (2) a set-size limit on
the number of objects that may be simultaneously attended to and
represented in working memory (on the order of three or four); and
(3) the capacity to track individual objects through occlusion, with specific
spatio-temporal information distinguishing cessation of existence from
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Figure 3.1. Schematic depiction of the design of the experiment by Kahneman,
Triesman, & Gibbs (1992) that introduced the term “object-file” into the literature.
Redrawn from Kahneman, D., Treisman, A., & Gibbs, B. (1992). The reviewing of
object files: Object-specific integration of information. Cognitive Psychology, 24,
175–219, with permission from Elsevier.
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occlusion. In what follows I first sketch the evidence for these signatures of
the processes that articulate mid-level object representations, and then I
sketch the evidence that infant object representations reveal the same
processing signatures.

The Signatures of Adult Mid-Level Object Cognition

The two literatures—that on mid-level object-based attention (mid-level
because the representations fall between low-level sensory processing and
high-level placement into kind categories) and that on object repre-
sentations in infancy—involve parallel problems, including uncovering
the bases of object individuation and numerical identity. Establishing
continuity is complicated by the existence in adults of at least two distinct
representational systems that underlie object individuation. One is fully
conceptual, and is the kind-based system that we draw upon when we
decide that a person ceases to exist when she dies, in spite of the con-
tinued existence of her body, or that a cup seen on a counter on Monday
cannot be numerically identical with a cat seen there on Tuesday. The
second is the mid-level visual system that assigns spatio-temporal indexes
to attended objects and creates object-files. It is this second system that is
identified with object representations in young infants, and it is this
second system that is characterized by the signature property of almost
exclusive reliance on spatio-temporal features (relative to property/kind
features) in object individuation and computations of numerical identity.

Figure 3.2 illustrates the operation of the two systems in establishing
numerical identity. Imagine that you lose perceptual contact with the
scene in Panel A, and return 5 minutes later to view the scene depicted in
Panel B. How would you describe what has happened? I assume you
would say that the rabbit has moved from above and to the left of the circle
to below and to the right of it, while the bird has moved from the bottom
left to the top right. That is, you would report the movements of the
individuals as in Panel C. In this account, numerical identity is being
carried by kind membership; it is the rabbit and the bird each of whom you
assume has moved through time. The conceptual, kind-based system of
individuation is responsible for establishing the object tokens in this case.
Now, imagine that the center is now a fixation point, and Panels A and B
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are projected one after the other onto a screen while you maintain fixation
on the common point. If the timing of the stimuli supports apparent
motion, which individuals do you see in motion? Rather than seeing a bird
and a rabbit each moving diagonally, you see two individuals each
changing back and forth between a black bird-shaped object and a grey
rabbit-shaped object as they move side to side, as in Panel D.

The visual system that computes numerical identity of the objects
that undergo apparent motion in cases such as this works to minimize the
total movement even if the result is a change in kind. This system takes
into account property or kind information only when spatio-temporal
considerations are equated (see Nakayama, He, & Shimojo, 1995, for a
review). The mid-level object tracking system is responsible for estab-
lishing the object tokens in the case of apparent motion, and it settles on
a different solution than does the kind-based system. That is, one of its
signatures is that it privileges spatio-temporal information over kind or
property information in computations of object individuation and
numerical identity.

A B

C D

Figure 3.2. Two competing bases of solving the problem of numerical identity. The
problem is which individual in Panel A is the same individual as which individual in
Panel B. If numerical identity is traced relative to kind or property, one sees a rabbit
and a bird moving diagonally (Panel C). If numerical identity is determined by
minimizing the total amount of motion, one sees two cases of a rabbit turning into a
bird or vice-versa (Panel D).
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Convergent evidence for this signature of object-based attention
derives from a fruitful paradigm developed by Pylyshyn and his
colleagues (Pylyshyn, 2001; Pylyshyn & Storm, 1998): multiple object
tracking, or MOT. In these studies, participants are shown a display, as
in Figure 3.3, consisting of many individual figures (e.g., eight in
this example). A subset of these figures are highlighted (four, in this
example), indicating the set that the participant is to track, and then
those again become indistinguishable, in terms of features, from the rest.
The entire array is then put into motion; the objects move randomly
and independently from each other, and the observers’ task is to keep
track of the attended set. After a period of tracking, the motion is
stopped and the observers must indicate which individuals constituted
the attended set. Consistent with the claim that object tracking is
based on spatio-temporal continuity, and that feature changes do not
cause the opening of new object-files, object tracking in the MOT
studies is not disrupted by the indexed objects’ changing color, size,
shape, or kind during their motion.

Additionally, a recent study by Brian Scholl and his colleagues
(Scholl, Pylyshyn, & Franconeri, 1999) underscores the primacy of
spatio-temporal information in the establishing and tracking of object-
files. In the MOT paradigm, if the motion of all the objects is stopped, at
which time one of the tracked objects disappears, the participants can
indicate that object’s last seen location and direction of motion. But if
objects are changing properties during tracking, participants are not

t = 1 t = 2 t = 3 t = 4

Figure 3.3. Schematic depiction of the design of Pylyshyn’s Multiple Object
Tracking experiments. Figure from Pylyshyn, Z. W. (2001). Visual indexes, pre-
conceptual objects, and situated vision. Cognition, 80(1–2), 127–158, with permission
from Elsevier.
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aware of the last seen color or shape of a tracked object. Not only is
spatio-temporal continuity the basis of tracking, but also participants have
conscious access to the spatio-temporal address of a currently attended
object, though not always to other features of the indexed object.

MOT studies also provide empirical support for the two other
signatures of mid-level object representations mentioned above. First,
the original studies found that the number of objects that may be
tracked in parallel is sharply limited. Performance is excellent when sets
of one, two, three, and sometimes four objects are tracked, but it falls
apart thereafter. This is part of the empirical basis for the claim that there
is a limit to the number of indexes that may be assigned at any one time,
although later studies suggest that the sharp limit of four objects
represented in parallel may be better thought as a limit on working
memory rather than a limit on attentional indexes (Alvarez & Franco-
neri, in press). Second, tracking in the MOT paradigm illustrates the
third psychophysical signature as well: it is not disrupted by barriers that
occlude the tracked entities, so long as they disappear at the barrier, as
would real objects’ going out of sight by regular deletion along the
leading contour and reemerging from the other side by regular accretion
along the opposite contour. If they pop out of existence, popping back
into existence when their trajectory would have taken them to the
other side, or if they shrink to nothing concentrically to a point as they
approach the barrier, expanding from a point on the other side, tracking
is totally disrupted. The system of mid-level object-based attention
distinguishes an object’s going behind an occluder from the point of its
going out of existence and being replaced by another object’s coming
into existence (Scholl & Pylyshyn, 1999).

Another fruitful paradigm—change detection—provides data that
support the signature set-size limit on mid-level object representations.
Participants are shown a small array of objects, as in Figure 3.4, for a
fraction of a second. After a delay of a second or more, a second array is
displayed, identical to the first one or differing in only one feature on just
one of the objects. The task is to detect the changes that occur. Parti-
cipants can detect the changes in arrays of one to three or four, after
which performance falls apart. This is true independently of the number
of features that might vary. The limit is three to four objects, even if the
objects differ in only one feature (e.g., shape, as in Figure 3.4) and if only
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that feature changes between arrays (i.e., the shape of one of the entities).
The limit is exactly the same (three or four), even if the objects differ in
color, size, shape, orientation, or presence/absence of an internal hole,
and any of these features can vary on changed arrays (Vogel, Woodman,
& Luck, 2001). That is, there is no cost to monitoring changes in color,
size, shape, orientation, or so on, over monitoring changes in any one of
these features alone. Apparently, working memory has a limit on the
number of object-files that can be simultaneously tokened, but many
features may be bound to each object-file.

In sum, the computations that maintain indexes to attended objects
rely heavily on spatio-temporal information: objects are tracked on the
basis of spatio-temporal continuity. Once an object-file is opened, fea-
tures may be bound to it and updated as they change through time. The
Scholl study just described shows that features are not automatically
bound in open object-files, perhaps because of the high attentional
demands of tracking three or four independently moving objects at once.
Up to four object-files may be held in working memory, after which
performance falls apart.

The Signatures of Infant Object Representations

Experiments show that the young infant’s object representations reveal
these same psychophysical signatures. I first sketch the evidence that
spatio-temporal features of the input are privileged in the computations

Figure 3.4. Schematic depiction of the Luck and Vogel change detection paradigm.
Redrawn from Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of
features, conjunctions, and objects in visual working memory. Journal of Experimental
Psychology: Human Perception and Performance, 27(1), 92–114, with permission from
American Psychological Association.
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of numerical identity early in infancy, and then turn to two other psy-
chophysical signatures that support the continuity of core object cogni-
tion through the life span.

Signature 1: Primacy of Spatio-Temporal Information in Infant Object
Individuation

Daniel Richardson and Natasha Kirkham (2004) modeled an infant study
on the object-file experiment of Kahnemann et al. described above.
They exposed 7-month-old infants to a computer display consisting of
two identical boxes arranged vertically (see Figure 3.5). While the infant
watched, a duck was revealed in one box and quacked, the box then
returning to its featureless state. Then a bell was revealed in the other box
and it rang, and then this box returned to its featureless state. After these
events repeated several times, the identical boxes went slowly into
motion until they were arranged horizontally, equally distant from the
midpoint of the display. At this point, either a quack or a ring was played
and the dependent measure was where the infants looked: the box in
which the matching object/sound had been revealed during habituation.
Analogously to the Kahneman et al. priming studies, these infants had
established representations of individual objects, bound features (the
identity of the stresses of the sounds that emerged from them), main-
taining the binding as they traced the identify of the objects through time
on the basis of spatio-temporally continuous paths.

This experiment suggests that infants have object-file representations
available to them. However, the thesis under consideration here is that
the object representations that were the focus of chapter 2 are object-files.
To establish this we must show that the computations that establish
object representations early in infancy display the same signatures as those
that compute object-files. I begin with the primacy of spatio-temporal
information.

The two screen studies and the infant 1 þ 1 studies described in
chapter 2 (Figures 2.1 and 2.3) show that infants as young as 2 months of
age draw on spatio-temporal information in object individuation and
tracking. Because the objects in those studies were perceptually indis-
tinguishable from each other, spatio-temporal discontinuity must have
driven representations of two distinct objects in these studies. However,
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Quack

Brring

Quack

Figure 3.5. Schematic depiction of the infant version of the Kahneman et al.
object-file experiment (Richardson & Kirkham, 2004). Richardson, D. C., &
Kirkham, N. (2004). Multi-modal events and moving locations: Eye movements of
adults and 6-month-olds reveal dynamic spatial indexing. Journal of Experimental
Psychology: General, 133(1), 46–62. Reprinted with permission from American
Psychological Association.
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these studies do not show that spatio-temporal information is privileged,
for they did not explore whether infants could also use perceptual
property differences (e.g., red vs. blue, cup-shaped vs. duck shaped) or
kind distinctions (e.g., cup vs. duck) as a basis for object individuation.

Recent studies, mainly by Fei Xu, establish that under many con-
ditions in which spatio-temporal information is sufficient for object
individuation, young infants fail to use property or kind differences
among objects for this purpose (Xu & Carey, 1996; Xu, Carey, &Welch,
1999). Imagine the following scenario: One screen is put on a puppet
stage. A red cylinder emerges from behind the screen and returns behind
it, and then a blue ball emerges from behind the same screen and then
returns (see Figure 3.6). How many objects are behind the screen? For
adults, the answer is clear: at least two—a cylinder and a ball. But since
there is only a single screen occluding the objects, and because we never
see both objects at once, there is no clear spatio-temporal evidence that
there are two objects. We must rely on our knowledge of perceptual
properties or object kinds to succeed at this task.

In our studies, 10- and 12-month-old infants were shown the above
event. The objects contrasted in kind and properties (in the above
example, a cylinder vs. a ball; a red cylindrical plastic object vs. a blue
round rubber object). Some objects were toy models (e.g., truck, duck,
elephant) whereas others were from highly familiar everyday kinds (e.g.,
cup, bottle, book, ball). On the test trials, the screen was removed to
reveal either the expected outcome of the two objects or the unexpected
outcome of only one of them. If infants have the same expectations as
adults—that these kind or property differences signal two distinct objects
—they should look longer at the unexpected outcome of one object.
The results, however, were surprising: 10-month-old infants did not
expect that there should be two objects behind the screen, whereas
12-month-old infants did.

Control conditions established that the method was sensitive to
infant representations of distinct individuals. Ten-month-old infants
succeeded at the task if they were given spatio-temporal evidence that
there were two numerically distinct objects (e.g., if they were shown
the two objects simultaneously for 2 or 3 seconds at the beginning of the
experiment). Furthermore, Xu and I (1996) showed that infants are
sensitive to perceptual or kind differences under the circumstances of this
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experimental paradigm: it takes infants longer to habituate to a duck and
a car alternately appearing from each side of the screen than to a single car
(or duck) repeatedly appearing from behind the screen. Ten-month-old
infants are sensitive to the property or kind differences, but they do not

Object 1 brought out.

Screen introduced.

Object 1 returned.

Object 2 returned.

Expected: two objects. Unexpected: one object.

Object 2 brought out.

Figure 3.6. Schematic depiction of design that explores when infants use property or
kind information as a basis for computations of numerical identity (Xu & Carey, 1996).
Redrawn from Xu, F., & Carey, S. (1996). Infants’ metaphysics: the case of numerical
identity. Cognitive Psychology, 30, 111–153, with permission from Elsevier.
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use these differences as a basis of object individuation, at least under these
circumstances.

In this task, 10-month-old infants failed to draw on kind-based
individuation over a wide range of kinds, such as duck, truck, animal,
vehicle, cup, bottle, and book. They also failed to draw on perceptual
contrasts, such as the contrast between being yellow, duck-shaped, and
rubber versus being red, car-shaped, and metal. Gretchen Van de Walle,
Mary Prevor, and I (2000) used the manual-search paradigm described in
chapter 2 to provide convergent evidence for the claim that infants below
12 months of age are more sensitive to spatio-temporal information than
kind or property information in computations that underlie object indi-
viduation. In this paradigm, the dependent measure is how long infants
search for objects inside a box into which they cannot not see. In the
studies that explored the basis of object individuation, three types of trials
were contrasted: (1) one-object trials, in which the same object (e.g., a toy
telephone) was removed from the box twice and replaced twice; (2) two-
object trials in which objects of different kinds (e.g., a telephone and a
ball) were removed one at a time and replaced in the box, such that the
two were never seen together; and (3) two-object trials in which two
different objects were removed one at a time, but shown together before
being returned into the box. In the second type of trial, infants must rely
on property or kind contrasts as a basis for object individuation; the third
type provided spatio-temporal information as well.

After one of these introductions to the contents of the box, the box
was pushed into the child’s reach, and patterns of search revealed how
many objects the child had represented in it. In these experiments,
we surreptitiously removed one of the objects on two-object trials, so
there was in fact only one object in the box. We could then measure
persistence of search for a second object. The question was whether infants
search for a second object after having retrieved one on two-object trials
(types 2 and 3) but not on one-object trials. Both 10- and 12-month-olds
differentiated the one- and two-object trials when given spatio-temporal
evidence for two objects. Twelve-month-olds also succeeded when given
property/kind information alone. In contrast, the 10-month-olds failed
in this condition; their pattern of reaching on the two-object trials was
the same as on the one-object trials. Ten-month-olds failed to use
kind differences, such as telephone, duck or car, book, or property
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differences, such as black, yellow, telephone-shaped, duck-shaped, rub-
ber, or plastic, to establish representations of two numerically distinct
objects in the box.

Other laboratories have replicated these findings (e.g., Bonatti, Frot,
Zangl, & Mehler, 2002; Wilcox & Baillargeon, 1998). In our original
writings on this topic, Xu and I (1996) made a blanket claim that infants
under 11 or 12 months of age never use property information or kind
information in the service of object individuation. This claim is too
strong (e.g., Tremoulet, Leslie, & Hall, 2000; Wilcox & Baillargeon,
1998). Just as is the case in mid-level vision, property information is
sometimes drawn upon in object individuation. The resolution of just
when and how property information is used for object individuation and
in object tracking, whether by adults or by infants, is beyond the scope of
this chapter (see Xu & Carey, 2000). For the point I am making here, all
that is necessary is that spatio-temporal information is primary, and that
infants fail to draw on property or kind information under conditions
under which they succeed when provided unambiguous spatio-temporal
information. This pattern of findings has been widely replicated.

In sum, results from these manual-search studies are completely
consistent with those from the looking-time studies. Two important
conclusions follow from these data. First, they are consistent with the
claim that kind-based object individuation is architecturally distinct from
mid-level object indexing and tracking (see Figure 3.2 and surrounding
discussion). They support the possibility that a second system of object
individuation, a kind-based system, emerges at around 12 months of age.
Of course, the data presented so far do not show that kind distinctions
rather than property distinctions underlie the older infants’ success;
chapter 7 takes up this issue and discusses the mechanisms that might
underlie the construction of a new representational system—kind-based
object representations—that goes beyond the core cognition system of
mid-level object files and object indexing. Second, they support the
identification of the young infants’ object representations with those of
the mid-level object tracking system, for they show that under these
circumstances at least 10-month-old infants fail to draw on property/kind
information in the processes that establish whether an attended object is
numerically identical or different from another, under conditions in
which they do draw on spatio-temporal information for this purpose. Just
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as in adult mid-level object representations, spatio-temporal evidence is
privileged by infants in object individuation.

Signature 2: Set-Size Limitations on Working Memory

Results from several paradigms converge to show that by the end of the
first year of life, infant working memory limits are in the same range as
those of adults (Rose, Feldman, & Jankowski, 2001; Ross-Sheehy,
Oakes, & Luck, 2003). In one series of studies, Shannon Ross-Sheehy,
Lisa Oakes, and Steven Luck adapted the change-detection paradigm for
infants in order to explore the development of infants’ working memory.
Infants watched two simultaneously presented displays, each consisting of
arrays of one, two, three, four, or six entities. Each display was presented
for a half a second, followed by a short delay, after which a new array
appeared. In one of the displays, there was no change between arrays,
whereas in the other, one of elements (chosen at random) changed color.
Ross-Sheehy and her colleagues reasoned that if infants could hold the
representation of the first array in working memory, they would detect
the change, and they would be more interested in the changing display
than in the constant array. They found that 4- and 6-month-olds could
hold single elements in working memory, for they preferred the arrays in
which color changed to the constant arrays when set size was one entity.
However, at these young ages infants failed to discriminate the changing
arrays when set sizes were two or higher. By 10 months of age, infants
differentiated the changing arrays from the constant arrays for sets of two,
three, and four, but not for six entities. Thus, it appears that working
memory capacity matures over the first year of life, reaching the adult
level of three to four object-files by 10 months of age.

Like the Richardson & Kirkham (2004) results, these experiments
again show that infants have an object-file system that resembles that of
adults. But what we want to know is whether the mid-level object
representation system of adults underlies the object representations
studied in the tradition of Piagetian studies. That the manual-search
paradigms used to explore infants’ representations of objects show
comparable limits on working memory suggests that the answer is yes.
Take, for example, the paradigm in which infants search for objects in a
box into which they can reach but cannot see. Above, we were
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concerned with the criteria for individuation that infants use to establish
representations of the distinct individuals in the box. But this task can also
used to characterize the limits on infants’ working memory, for the infant
must hold in mind a model of the objects placed in the box to guide
subsequent searches.

In the relevant experiments, only spatio-temporal evidence for
individuation is provided—the objects are identical to each other. Infants
watch as a number of objects, all seen at the same time, are placed in the
box, one at a time. The box is then given to them to retrieve the objects.
On crucial trials, some of the objects have been surreptitiously removed
before the box is given the child. Success consists of less search on one-in/
one-out trials, or two in/two trials (expected empty) than on two in/one
out, or three in/one out, or three in/two out trials (more expected).
Several studies have found success on one versus two comparisons (longer
search on more expected trials than on expected empty trials), at both
12 and 14 months of age (Feigenson & Carey, 2003, 2005; Van de Walle
et al., 2000).

Lisa Feigenson explored the upper limit of infants’ representations
under these circumstances. She found that infants succeed just when the
total number of items placed in the box is three or fewer, but per-
formance falls apart at four entities. For instance, infants of these ages
search for more objects if they have seen three go in and have retrieved
just two or one, but they fail if they have seen four go in and have
retrieved two, and they even fail if they see four go in and have
retrieved only one. Dwell on this last result. Infants search no longer
upon having seen four go in and having retrieved only one than if
they have seen just one go in and have retrieved only one. It’s not that
the child represents nothing in the box when he or she saw four go in; the
infant does reach in and retrieve one. Infants represent something in the
box, but they cannot form a representation of a set of four items under
these circumstances.

Studies of spontaneous choice between two sets of objects provide
data entirely convergent with those from the manual-search paradigm
(Feigenson & Carey, 2005; Feigenson, Carey, & Hauser, 2002). Ten- and
12-month-old infants were shown a certain number of graham crackers
placed in one bucket, one at a time, and a different number placed in
another bucket, also one at a time. The infants could not see the crackers
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in the buckets. After watching the crackers being placed, the infants were
allowed to crawl to one or the other bucket. At issue was whether they
would go to the bucket with the larger number of crackers. This is what
they did, when the choice is one versus two, one versus three, or two
versus three. Performance was at chance at three versus four, two versus
four, three versus six, and even one versus four. Performance fell apart if
one of the sets exceeded three items. Just as in the above experiment, it
isn’t that the infants represented nothing when there were four or more
objects—performance was random, not systematically, in favor of the
smaller number in one versus four, two versus four, and three versus six
comparisons. Furthermore, when the choice was four versus zero, the
infants reliably crawled to the bucket with four. When there were four or
more graham crackers in a bucket, infants represented “graham cracker in
that bucket” but failed to establish a representation consisting of one
object-file for each object.

Consider three versus two and four versus one comparisons. In both
cases the total number of graham crackers was five, and this number, by
hypothesis, exceeds the upper limit of three that infants can hold in
working memory under these circumstances. Yet children succeeded in
the former case and failed in the latter one. Apparently, infants can create
two short-term memory models of attended objects, up to the limits on
parallel individuation, and compare them in memory. We do not cur-
rently know how many models may be represented at once. The
important lesson for us now is this: the limits on working memory in
adult visual cognition studies is in the same range as the limits on the
numbers of objects infants can simultaneously represent in working
memory. This fact supports the identification of the representations
underlying object-based attention and working memory in adults with
the object representations of infancy.

Signature 3: Occlusion versus Existence Cessation

Another parallel between the two systems is that adults’ representations of
indexed objects in the multiple object–tracking experiments, as with
infants’ representations of objects in the experiments described in chap-
ters 2 and 3, survive occlusion. Brian Scholl and Zenon Pylyshyn (1999)
showed that object tracking in the MOT paradigm was not disrupted by

Core Object Cognition 85



the objects going behind real or virtual occluders, so long as the way the
object disappeared specified occlusion and not going out of existence.
Almost all of the infant studies cited above involve occlusion—objects are
hidden behind screens, in boxes, or in buckets.

Eric Cheries and his colleagues (Cheries, Feigenson, Scholl, & Carey,
2005) have recently demonstrated that infants’ object tracking is disrupted
by exactly the same stimulus manipulations as is adult object tracking.
Cheries habituated infants to small sets of disks (say, three) moving slowly,
independently of each other. Also present in the display were two vertical
bars that served as occluders. When the disks encountered a bar they either
(1) disappeared as if passing behind it though ordinary deletion along their
forward contours, reemerging on the same trajectory from the other side
of the barrier by ordinary expansion along their back contour; or (2)
shrank symmetrically to nothing at the same rate of disappearance upon
encountering a barrier, reemerging on the same trajectory by expanding
symmetrically from a central point. After habituation, the barriers were
removed, and the infants were shown, in alternating test trials, either the
same number of moving disks (three, in this example) or a new number
(two, in this example). Importantly, the test trials were identical in all
conditions, depicting continuously moving arrays of disks. Infants who
were habituated to the type of deletion at boundaries that specifies
occlusion dishabituated to the novel number, whereas those who were
habituated to the type of deletion that specified shrinking to nothing did
not. We interpret this result as reflecting the child’s ability to track the
individuals in the normal deletion condition, such that there were exactly
three throughout the whole habituation period. When objects shrank out
of existence and new objects expanded into existence, there was no fixed
number present during habituation and so the child did not dishabituate to
a novel number.

The infant’s object tracking system and the object tracking system
tapped in adult MOT studies use the same characteristics of events to
distinguish two types of disappearance of currently attended objects:
(1) disappearance that specifies continued existence of the objects behind
the barriers and (2) disappearance that specifies existence cessation. This is
the third signature, along with privileging spatio-temporal features in
object individuation and a limit of three or four object-files in working

86 The Origin of Concepts



memory, that favors identifying object representations in infancy with the
adult object-file system of representation.

Conclusions from the Identification of the Two Literatures

Researchers in both traditions—those studying infant object repre-
sentations and those studying mid-level object-based visual cognition—
have been studying the same natural kind. This discovery has important
implications for the characterization of core cognition. First, the com-
putations that establish object-indexes and object-files, that individuate
and trace objects through time and store these representations in visual
working memory, operate throughout the life span, exemplifying one of
the hypothesized properties of core cognition. Second, adult object-file
representations are the output of domain-specific, encapsulated, per-
ceptual input analyzers, thus exemplifying another hypothesized char-
acteristic of core cognition. Adults may know that ducks do not change
into rabbits, but typically the mid-level system that computes numerical
identity in apparent motion studies does not use that knowledge To a first
approximation, the processes that compute figure-ground, assign surfaces
to distinct objects, and assign indices to attended objects work the same
no matter whether an object picked out is a member of a familiar kind or
not (see Carey and Xu, 2001; Peterson, 1994). So, too, for young infants’
object representations.

The Evolutionary History of Object-File Representations

I now turn to another property of core cognition systems: deep evolu-
tionary history. Often, but not always, core cognition is shared with other
animals. This fact is important, for evidence that a knowledge system is
shared among a wide range of species with a common ancestor, but with
very different ecological niches and different learning histories, supports
the hypothesis that the system is innate and was shaped by evolutionary
selection pressures.

Chapter 2 described the work of Regolin and her colleagues on
newborn chicks’ representations of spatio-temporal continuity of
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objects—representations that support the search for occluded objects.
This work provided an existence proof that representations of objects
as spatio-temporally continuous may be innate. Do such results suggest
that the mid-level object-file and object-indexing systems shared by
human adults and young human infants have a long evolutionary history,
perhaps arising early in vertebrate evolution? No, they don’t. That chicks
can form representations of objects that respect their spatio-temporal
continuity does not warrant the conclusion that a system of representa-
tion with all of the properties of mid-level object-based attention
underlies their performance. To explore this issue, we would need to
characterize the conceptual role of chicks’ object representations (e.g., do
chicks represent object motion as subject to the solidity constraint?), and
we would need to study how chicks individuate objects and whether
they can create working-memory representations of multiple objects at
once. No relevant studies have been carried out, so it is an open empirical
question.

However, we do know that the evolutionary history of human core
cognition of objects extends at least into our primate past. Marc Hauser
and his colleagues have used all of the methods reviewed in chapter 2 and
this chapter (violation-of-expectancy looking-time methodology, man-
ual search for hidden objects, choice between two sets of hidden objects)
with nonhuman primates (e.g., Hauser & Carey, 1998, 2003; Hauser,
Carey, & Hauser, 2000; Hauser, MacNeilage, & Ware, 1996). The results
converge with the data from young infants in great detail. Hauser’s work
has great methodological import. He was the first to show that the
violation-of-expectancy looking-time methods yield interpretable data
with nonhuman primates, both free-ranging Rhesus macaques and lab-
oratory-housed new world monkeys, cottontop tamarins.

Results from the violation-of-expectancy looking-time methods
show that both species of monkeys can use spatio-temporal evidence for
object individuation and represent objects as continuing to exist when
occluded. Hauser’s first violation-of-expectancy study (Hauser, MacNeilage,
& Ware, 1996) was a replication of Wynn’s 1 þ 1 ¼ 2 or 1 addition/
subtraction study with free-ranging Rhesus macaques on Cayo Santiago, an
island off the coast of Puerto Rico that is home to about 900 Rhesus.
Subsequent studies from Hauser’s group also replicated Wynn’s study with
laboratory-housed cottontop tamarins (Uller, Hauser, & Carey, 2001).
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Hauser and I extended this findings to the same range of conditions
under which success is obtained with 4- to 10-month-old human infants: 1
þ 1¼ 2 or 3 (showing that it is exactly two objects the monkeys expect; 1
þ 1 ¼ 2 or big one (showing that monkeys are not solely encoding total
expected eggplant volume). Furthermore, performance breaks down at
four objects; monkeys succeed at 2þ 1¼ 2 or 3, but fail at 2þ 2¼ 4 or 3,
consistent with there being an upper limit of three or four on the number
of objects a monkey can track at once (Hauser & Carey, 2003). We also
established another processing signature in common to the computations
both infants and Rhesus macaques deploy when creating object-file
working-memory models of small sets. In both populations, success is
dependent on the number of updates in short-term memory that are
required to build a representation of the set behind the screen. Monkeys
and babies succeed in a 2þ 1¼ 2 or 3 condition, but they fail at a 1þ 1þ
1 ¼ 2 or 3 condition. Following Uller, Carey, Huntley-Fenner, & Klatt
(1999), we interpret these findings as reflecting constraints on computa-
tions that can be carried out on models being held in working memory.

Another paradigm that yields convergent results across the two
subject populations is the cracker-choice study described above. Actually,
this paradigm was originally carried out on Cayo Santiago, with apple
slices rather than graham crackers as the food item placed in the buckets.
Monkeys watched as two experimenters placed one set of apple slices in
one bucket, one at a time (e.g., 1 þ 1 þ 1), after which the other
experimenter placed the another set in the other bucket (e.g., 1 þ 1 or
1 þ 1 þ 1 þ 1). Monkeys succeeded when the choices were one versus
two, two versus three, and three versus four. Just like the babies, mon-
keys’ performance fell apart when one of the sets exceeded a certain limit
—in this case, four rather than the three of the infants. Particularly
important are failures at two versus five, four versus eight, and three
versus eight; these choices involve highly discriminable numbers, with
ratios much greater than those between small sets at which monkeys
succeed (two versus three and three versus four; see Barner, Wood,
Hauser, & Carey, in press; Hauser et al., 2000). Again, the pattern of
performance is extremely similar to that of the babies and reveals the set-
size signature of object-file representations

Thus, insofar as the issue has been studied, the processes that create
object representations in nonhuman primates reveal the same signatures
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as do those of human infants. All the work to date suggests that the core
cognition of objects exhibited by young infants has a long evolutionary
history. Cottontop tamarins, who last shared a common ancestor with
human beings well over 100 million years ago, exhibit it, as do our more
closely related cousins, Rhesus macaques.

Core Cognition and Learning: Specialized Learning
Mechanisms?

Another hypothesized feature of core cognition systems is that they are
learning devices. There is no doubt that infants learn many general-
izations about objects during their early months. Thus, the processes
that yield object representations yield representations of endities about
which the infant learns. What we do not yet know is to what extent the
processes that support learning about objects are within module and
domain-specific or domain-general central processes. Because the
representations that are the output of the perceptual input analyzers are
central, no doubt domain-general central learning mechanisms (e.g.,
association, causal learning) operate over them. But if human core cog-
nition is like animal core cognition (remember the indigo buntings), we
would also expect that some knowledge about the entities in each
domain is acquired by within-module domain-specific learning
mechanisms. This issue has not been systematically studied.

Consider just one case of learning about objects. Renée Baillargeon
(1998) showed that infants do not innately know that unsupported
objects fall. In one series of studies, infants watched during habituation
trials while a small block was slowly pushed across a large supporting
block, beginning on one end of the support and ending at the other, still
fully supported (see Figure 3.7, familiasization). Then infants were pre-
sented a series of test trials, probing their expectations concerning when
the block should fall (Figure 3.7A–F). On some trials the small block
was pushed off the large one until it was completely unconnected,
and thus totally unsupported by it, apparently suspended in mid-air
(Figure 3.7A). On other trials, it remained in contact with the block, but
in various configurations that to adults either would seem possible (Figure
3.7D and F) or would not seem possible (Figure 3.7B, C, and E).
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Infants’ expectations unfold in a regular sequence over a long period
of development. At 3 months of age, infants show no differential interest
in these events. Even the unsupported object (Figure 3.7A), hanging in
mid-air, is not particularly attention grabbing. Just a few weeks later,
though, this impossible event draws markedly longer looking than does
the possible event they were familiarized to. The child has begun to learn
something about support. Infants first make a categorical distinction
between contact/noncontact, and do not pay differential attention to

Familiarization

A

C

E

B

D

F

Figure 3.7. Schematic depiction of the Baillargeon support experiments. (Baillar-
geon, 2001; Baillargeon & Hanko-Summers, 1990). Redrawn from Baillargeon,
R., & Hanko-Summers (1990). Is the top adequately supported by the bottom
object? Young infants’ understanding of support relations. Cognitive Development, 5,
29–53, with permission from Elsevier. Emmanuel Dupoux (Ed.), Language, Brain,
and Cognitive Development: Essay in Honor of Jacques Mehler, pp. figure: Infants’
physical knowledge of acquired expectations and core principles, ª 2002

Massachusetts Institute of Technology, by permission of the MIT Press.
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objects that do not fall so long as there is any contact with the support.
That is, they look longer at outcome A in Figure 3.7 than at any other
outcome, including B, but do not differentiate any of the others. They
gradually refine the parameters relevant to support. Next, the contact
must be from below (now outcome B also draws attention, but none of
the rest, C–F, do). Then, more than half of the base of the object must be
supported from below (C also draws attention, but none of the rest do).
Finally, they take into account the geometry of the object (Figure3.7E is
attention grabbing but not 3.7D or 3.7F).

Baillargeon (1998) presents indirect evidence that the initial stages of
this learning occur, in the ordinary course of events, from infants’ own
attempts to place objects on surfaces. Infants who sit unsupported will
progress through the early steps of this sequence earlier than those who
do not yet sit alone—consistent with the hypothesis that infants
learn about support by placing objects on surfaces and observing the
outcomes. Those who sit alone have their hands free to manipulate
objects. Baillargeon has shown that learning about support can also be
driven from observational evidence. In training experiments she shows
infants contrasting cases of objects being placed on surfaces and falling or
remaining supported, and she finds acceleration in the above sequence.

The objects involved in the support studies are unfamiliar to the
babies; that is, they have not had experience with those very objects. This
suggests that their previous experiences with objects in general are driving
the developmental progressions Baillargeon observes in these studies.
Experiments such as Baillargeon’s certainly show that infants learn about
objects, but they leave open whether the processes that support this
learning are at least partly domain-specific. It is easy to see how the
learning from observation in the support studies could be well modeled
by domain-general associative mechanisms that extract statistical regu-
larities from representations of events. The sense in which domain-spe-
cific learning mechanisms may be involved is limited, but important.
There may be domain-specific constraints on the features and relations
that enter into the statistical analysis.

An analogy from the literature on animal learning clarifies the sense
of domain-specific learning at issue here. There is absolutely no doubt
that animals learn associations between stimuli. Rats can easily learn that
the occurrence of a particular sound predicts the occurrence of a shock
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from their water feeder, and they can also learn that a distinctive taste in
the water predicts nausea two hours later. However, the reverse pairing
(that a sound predicts nausea, that a taste predicts shock) is much harder to
learn. This shows that there are domain-specific constraints on the
associative pairings that can be learned. The appeal to domain specificity
in this example is much weaker than in the case of the domain-specific
learning mechanism that enables indigo buntings to extract north from
the rotation of the night sky, for this latter mechanism involves a com-
putation that is unique to the learning problem it evolved to solve. In the
case of the rat, the associative mechanisms are very general, applying to a
huge variety of cases of learning that involve computing statistical
covariation in the environment. The domain specificity comes in con-
straints on the salience weighting of particular features in particular
contexts. Although weaker, nonetheless, this is a bona fide type of
domain-specific constraint on learning (see Gallistel, Brown, Carey,
Gelman, & Keil, 1991, for an extended discussion of species-specific and
domain-specific constraints on associative learning).

How would we find out whether the processes that extract the
statistical generalizations concerning support are domain-specific in the
sense of being constrained to weight some features more heavily than
others? It is possible to imagine a relevant program of research. For
example, one could take a variety of contrasts among objects that are
salient to infants—for example, shape contrasts—and provide statistical
evidence that these covary with whether objects remain supported or fall
in the observational learning paradigm of Baillargeon and her colleagues.
That is, one could try to teach the generalization—a cylinder covered
with blue glitter, supported from below on three-fourths of its surface,
does not fall; but a red striped block, supported from below on only
one-fourth of its surface, does fall. What generalization does the child
learn—the geometric one concerning the amount of surface supported,
or that that cylinders don’t fall and blocks do, or that blue glittery things
don’t fall but red striped things do? If the child is biased to analyze the
geometric relations between the object’s base and the support, this would
be evidence for domain specificity in this learning mechanism. If human
core cognition resembles animal domain-specific learning devices, we
would expect that at least some such constraints on statistical learning will
be observed. To my knowledge, no studies have yet explored this issue.
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Modularity: Are Object Representations Encapsulated or
Informationally Promiscuous?

As discussed in chapter 1, in The Modularity of Mind, Fodor (1983) argued
that rather than trying to distinguish perceptual from conceptual content,
the conceptual/perceptual contrast is more perspicuously drawn on the
basis of processing characteristics. He suggested that perceptual processes
are modular, and he characterized modular processes as fast, automatic,
primarily data driven by sharply limited input, inaccessible, and encap-
sulated. By “encapsulated” he meant that other knowledge does not affect
processes internal to the module. He contrasted modular perceptual
processes with central cognitive processes, which are slow, effortful,
optional, accessible, and informationally promiscuous. By “information-
ally promiscuous” he meant freely used in inference. For informationally
promiscuous representations there are no restrictions on what data bear
on which inferences; it is a matter of theory building to discover the
inferential relations among real-world phenomena. Fodor suggested that
the architecturally important distinction is between modular and central
processes. According to Fodor, it doesn’t much matter whether one uses
the terms “perceptual” and “conceptual” for the two respective types.

Unambiguously perceptual processes (such as computing depth) are
indeed modular and unambiguously conceptual ones (such as creating the
theory of natural selection) are indeed nonmodular and central. Notice
that if one draws the distinction between perceptual and conceptual this
way, many representations that do not have sensory content, such as
syntactic representations, turn out to be perceptual. What about object
representations? I argued in chapter 2 that object representations them-
selves have conceptual content in the sense of not being able to be stated
in terms of perceptual primitives, and in the sense of having a rich
conceptual role. Nonetheless, like syntactic representations, the input
analyzers that create object representations are most likely modular, and
thus perceptual on Fodor’s definition. One reason to think so is that the
processes that underlie object individuation are encapsulated from
property and kind information that the infant undoubtedly represents.
The core cognition thesis concurs that core cognition representations are
perceptual in this sense. Indeed, it is important to the thesis, for the
existence of evolutionarily created innate perceptual input analyzers at
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least partially solves the problem of how the representations in core
cognition have the content they do. This aspect of core cognition
representations explains how they are causally connected to the entities in
the world they represent.

However, the output of the innate perceptual input analyzer—as with
all perceptual modules—is part of a central system that is cognitive by
Fodor’s characterization. Object-files themselves seem accessible and
participate in slow, optional, inferentially promiscuous processes. They
are inferentially related to the outputs of other systems of core cognition.

Take, first, the question of accessibility. Of course, it is virtually
impossible to know whether a representation in a prelinguistic creature’s
mind is widely accessible. But adult object-files are certainly accessible.
We have phenomenal access to them and we can carry out a wide variety
of optional computations, under executive control, over them. Accept-
ing the identification of object-files with infant object representations
implies that object-files are accessible for infants as well. Furthermore, we
have at least indirect evidence that object-files are accessible to infants.
Object-files support voluntary action—infants reach for objects, even
hidden ones. The box-search and bucket-choice studies reviewed above
show that infant object representations, like object-files, are individual
symbols that can be placed in short-term memory, and such short-term
memory representations are accessible for adults.

What clinches the matter for me is evidence that that infant object
representations interact inferentially with representations that are the
output of distinct input modules. Because this is such an important point,
I will belabor it. Individuating distinct domains of core cognition is far
from a trivial matter. It is not clear, for example, whether computations
of Michotte contact causality are part of core cognition of objects or a
separate system whose outputs are interrelated with it (a point taken up in
chapter 6). But on just about every analysis, spatial representations are a
distinct input system from object-file representations, as are number
representations, quantity representations, and representations of inten-
tional agency. Yet object representations are integrated with repre-
sentations from all of these domains. Thus, while the computations that
yield representations of object-files are modular and encapsulated, the
object-files themselves are inputs to a variety of central computations.
With respect to inferential role, then, the object representations that are
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part of core cognition are seen to be rich conceptual representations. Let
me remind you of the bases of these assertions.

First, young infants represent the spatial relations among objects.
I have reviewed massive evidence that shows they represent objects
behind barriers, inside boxes, and inside buckets. To give just one more
demonstration of this, Kristine Onishi and Renée Baillargeon (2005)
habituated infants to two identical blocks being moved into the center
of the stage from the sides, one (e.g., the one from the left side) always
placed on top of the other. Looking times were measured to the static
array. After habituation, the blocks were again moved to the center of the
stage, but the previously bottom block was placed on top. The resulting
array was identical in appearance to the one that the infant was habituated
to, but if they distinguished the two object tokens and represented which
one was on top, their attention might be drawn to the change, and,
indeed, it was.

Second, with respect to number representations, we have already
seen that infants can compute 1–1 correspondence over object-files to
establish numerical equivalence (see also chapter 4). Chapter 4 will also
show, with respect to quantity representations, that infants can sum over
continuous variables bound in object-files to choose between sets on the
basis of total volume.

Third, with respect to agency, chapter 5will show that infants as young
as 5months old represent objects as goals of others’ intentional actions, and
chapter 6 will show that 7- to 12-month-old infants infer a previously
unseen agent to explain the motion of a known inanimate object.

Notice that, on the view of core cognition developed here, some of the
representations that articulate core cognition are not conceptual—those that
are within module and encapsulated. I have made an extended argument
that object itself is a conceptual representation, but knowledge of spatio-
temporal continuity and cohesion probably are not. The computations that
create representations of objects make use of evidence for spatio-temporal
continuity and boundedness, and embody a commitment to these pro-
perties of objects in further computations, but there is no reason to believe
that the child explicitly knows principles such as “objects continue to exist
behind barriers,” “objects do not fall apart and reassemble,” or “one object
cannot pass through the space occupied by another.”
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The Content of Object-Files

Recognizing that object representations (both young infants’ and adults’
object-files) are the output of modular input analyzers, at least partially
encapsulated from representations of object kinds, and hence mid-level,
may raise questions about the argument of chapter 2 that object repre-
sentations are conceptual. There, I argued that young infants’ repre-
sentations of objects, which we now see to be object-files, are conceptual
because their content cannot be stated in spatio-temporal vocabulary or
in the vocabulary of sense data, and also because of their rich inferential
role. As just mentioned, chapters 3 through 7 provide much more evi-
dence concerning the rich inferential role of young infants’ object
representations—they are integrated with infants’ representations of
number, causality, and intentional agency and they are expressed in the
child’s earliest explicit language.

But what exactly is the content of object-files? What concepts do
they represent? It is difficult enough to characterize the content of a given
mental symbol if the creature we are studying can express that symbol
explicitly in language. But what of nonlinguistic creatures like chicks and
monkeys and preverbal humans? I see no other route to specifying a
representational system’s content than by studying what entities in the
world cause the tokening of the mental symbol in question—that is, by
studying the extension of the symbol. And, also, we must study that
symbol’s inferential role. These two aspects of the functioning of symbols
determine content, and thus whatever evidence we can glean about a
symbol’s extension and inferential role allows us to characterize its
content. In what follows I illustrate, first, how one might appeal to
evidence concerning extension and, then I illustrate how one might draw
on evidence concerning inferential role to answer the question of what
the content is of object-files.

The Extension of Object-Files

I have been assuming that object-files symbolize physical objects, by
which I mean bounded, coherent, 3-D, separable, spatio-temporally
continuous wholes. This claim, that object-files represent real 3-D
objects, hardly may seem surprising, but in fact there are reasons to doubt
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it. In virtually all of the adult studies done on mid-level vision, as well
as in many of the infant studies, the stimuli are actually 2-D entities on
computer screens (e.g., Cheries, Feigenson, Scholl, & Carey, 2008;
Johnson & Aslin, 1995; Kahneman et al., 1992; Pylyshyn & Storm, 1998;
Richardson & Kirkham, 2004; Scholl & Pylyshyn, 1999). Does the fact
that 2-D bounded entities activate object-files mean that their content is
more perceptual—perhaps closed shape? Should object-files be called
“closed shape-files” or “perceptual individual-files”? No, they should
not. For computer displays to work, we must present many of the cues
for depth in 2-D arrays, and surfaces arrayed in 3-D are routinely per-
ceived in such displays. That the system can be fooled into accepting 2-D
entities as objects does not mean that it is not representing the stimuli as
real objects, just as the fact that the system can be fooled into seeing depth
in 2-D displays that provide perspective and interposition cues does not
mean it is not representing the stimuli as arrayed in 3-D space.

But what reasons do we have for believing that the system is being
fooled by these computer displays, and is representing them as real 3-D
objects in spite of the fact that they are not? If 2-D closed shapes are not in
the extension of object-files, but object-files are activated by these com-
puter displays, then the mid-level object tracking system is misrepresenting
these stimuli. Jerry Fodor (1990) has provided a way of thinking about
misrepresentation. Misrepresentation is a problem for any naturalistic
theory of representation, but Fodor is mainly interested in one kind of
naturalistic theory, one that holds that content is determined by a causal
link between the entities in the world and a symbol token in the mind.
Fodor’s asymmetric dependence theory of referential content proposes
a solution to this problem. He illustrates the solution with the example of
a horse seen in the distance on a misty day being misidentified as a cow.
The real-life horse caused the tokening of the cow symbol; and if content
is determined by such causal links, doesn’t this mean that the content of
the cow symbol is horse as well as cow? No, says Fodor. When one fleshes
out the causal story, one sees that the reason that the horse can cause the
cow symbol to be activated depends on the causal links between cows
and that symbol, but that the reason cows cause the cow symbol to be
activated does not depend in any way on whether horses do so. This
asymmetry allows us to see that the symbol really represents cows, not
horses.
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Even if Fodor’s analysis has problems, it works well enough for the
purposes of this book (for discussion of the problems, see Adams &
Aizawa, 1994; Godfrey-Smith, 1989). I accept the causal theory of
content determination for representations in core cognition, so Fodor’s
analysis applies to the case at hand. That 2-D individuals cause object-files
to be activated is dependent on the causal relations that ensure that
object-files refer to 3-D objects; and in the case of core cognition (unlike
concepts such as cow), we have at least a sketch of what the relevant causal
processes are. Through natural-selection input analyzers have evolved
that create representations of objects from the information in the physical
stimulation of sense organs. It is clear how Fodor’s asymmetric depen-
dency theory allows that 2-D entities might be misrepresented as objects,
and there is evidence it is on the right track. One reason to believe that
infants misrepresent 2-D pictures as real objects is that, under at least some
circumstances, they attempt to pick them up. Systematic studies have
shown that attempts to handle and pick up pictured objects are readily
elicited in children under 1 year old and disappear completely only
around 18 months of age (Deloache, Perroutsakos, Uttal, Rosengren, &
Gottlieb, 1998). This observation does not require that babies completely
fail to distinguish 3-D and 2-D objects—and they don’t (they always
reach more for a 3-D than a 2-D version), for there is conflicting evi-
dence coming from the pictures. The situation is the same as when we
adults see depth in a picture: we represent the depth while at the same
time representing the picture’s 2-D quality.

Another line of evidence that 2-D entities are actually being
represented as objects is that the properties that constrain object repre-
sentation clearly reflect the properties of real objects. For example, I have
reviewed evidence that the processes that establish and maintain object-
file representations are sensitive to the spatio-temporal information that
specifies either occlusion or existence cessation. Occlusion and existence
cessation are properties of real physical objects, not disks of light displayed
on computer screens. The implosion/disappearance studies provide data
concerning the extension of object representations by probing what does
not cause their tokening: entities that shrink to nothing or suddenly
disappear fail to elicit object indexing and tracking.

Two series of studies with 8-month-old infants confirm that mere
perceptual boundedness is not sufficient to cause object-files to be set up.
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Object-files are not closed-shape files. These studies confirm that the
individuals being tracked in the infant studies are physical objects, and not
just any perceptual objects specified by figure/ground processes, such as
disks on computer screens or piles of sand or blocks.

A hallmark of physical objects is that they maintain their boundaries
through time. Other entities that are bounded in space while stationary,
such as a pile of sand or a pile of separate little blocks, do not maintain
boundaries if grasped from above, and in this sense are not objects.
Several studies have compared infant representations of such non-
cohesive entities with their representations of cohesive entities fashioned
to look identical to the non-cohesive ones while are rest. It is only upon
viewing such entities in motion (do they fall apart or do they maintain
their boundaries?) that unequivocal evidence for their ontological status is
obtained. Consistent with the claim that object-files represent objects,
two series of studies establish that infants track real objects that are per-
ceptually identical to piles of sand or piles of little blocks, under condi-
tions where they will not track the perceptually identical non-objects
(Huntley-Fenner, Carey, & Solimando, 2002; Chiang & Wynn, 2000).

Take the studies by Gavin Huntley-Fenner and his colleagues (2002)
as an example. We carried out a series of 1 þ 1 ¼ 2 or 1 experiments
involving sand poured behind screens or sand-pile look-alike objects
lowered behind screens. Stimulus type was a between-participant variable,
and infants were familiarized with the stimuli before the study by handling
the sand or the sandlike object. In all of the studies, 8-month-old infants
succeeded in the conditions involving objects that looked like piles of sand,
but they failed in the sand conditions. The failure in one of these studies
was especially striking, for it shows that infants fail to compute “sand
permanence” under conditions in which they easily compute “object
permanence.” In this study, diagrammed in Figure 3.8, the infant watched
as a pile of sand was poured onto the stage floor and then covered by a
screen. A second, spatially separate, screen was introduced and a second
pile of sand poured behind it. The screens were then removed, revealing
either two piles of sand (one behind each screen) or only one (the original
pile initially seen on the stage floor). Eight-month-olds did not differen-
tiate the two outcomes, although they succeeded if the stimuli were sand-
pile shaped objects lowered as a whole onto the stage floor.
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To succeed at this task, the infant need only represent “sand behind
this screen, sand behind that screen.” Why did they fail at “sand
permanence”? As mentioned in chapter 2, object permanence requires an
individual object whose identity is being tracked; it is the same object we

Pour sand pile 1.

Screen 1 is raised.

Raise screen 2 and
pour sand pile 2

Expected: two sand piles Unexpected: one sand pile

Figure 3.8. Schematic depiction of the design of sand tracking or “sand
permanence” studies (Huntley-Fenner, Carey & Solimando, 2002). Redrawn from
Huntley-Fenner, G., Carey, S., & Solimando, A. (2002). Objects are individuals but
stuff doesn’t count: Perceived rigidity and cohesiveness influence infants’ repre-
sentations of small groups of discrete entities. Cognition, 85(3), 203–221, with
permission from Elsevier.
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represent behind the screen. Apparently, 8-month-old infants cannot
establish representations of individual portions of sand and trace them
through time. Wen-Chi Chiang and Karen Wynn (2000) found exactly
the same results with piles of blocks. If the pile moved as a single coherent
object, 8-month-old infants could track it and represent it as continuing
to exist behind a barrier. If they were shown this entity being separated
into five blocks and then reassembled, they subsequently failed to track it.

A recent study by Erik Cheries (Cheries, Mitroff, Wynn, & Scholl, in
press) brings home how devastating noncohesion is to object tracking.
Cheries began by replicating Feigenson’s cracker-choice study with a
two-versus-one comparison. The individuals each consisted of half a
graham cracker. If cheries put two of these half-crackers, one at a time,
into one bucket and one half-cracker into the other bucket, the infants
reliably crawled to the bucket with two. But if he brought out a whole
cracker and broke it in half above the bucket, clearly separating it into
two half-crackers, and then put them, one at a time, into it and then put
one half-cracker into the other bucket, the infants were at chance.
Apparently, as soon as an object is seen to be noncoherent, infants cannot
track it and they cannot easily assign object-files to parts of an object
originally parsed as a single object. The object tracking system fails to
track perceptual specified figures that have a history of noncohesion.

Let us stop and take stock of where we are. In order to be sure that
infants have mental symbols with the content object, we must study the
real-world entities that cause the tokening of the mental representations
that might have that content—the mental representations that underlie
infant performance in the experiments reviewed in chapter 2 and this
chapter. The sand- and block-pile studies reviewed above add data in
support of the claim that the content of what we are calling object repre-
sentations are indeed real-world objects.

I now turn to another line of relevant data bearing on the content of
object-files, deriving from studies of the inferential role of infant object
representations.

The Inferential Role of Object-Files and Infant Object Representations

There has been no work on the inferential role of adults’ object-file
representations, but if we accept the identification of adult object-files
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with infant object representations, then the infant work bears on both
adult and infant conceptual roles. Chapter 2 developed the argument that
young infants’ object representations articulate physical knowledge. I
showed there that infants as young as 2 months old represent physical
relations between objects such as inside and behind, and their repre-
sentations are constrained by knowledge of solidity—a property of real
objects but not of 2-D visual objects. Besides expecting objects to be
solid, and thus not to pass through other ones, slightly older infants
(6-month-olds) also expect objects to be subject to the laws of contact
causality (see chapter 6), represent objects as the goals of human action
(see chapter 5), and represent self-moving agents as the cause of motion
of inanimate objects (see chapter 6).

Thus, the conceptual role of the infant’s object representations is to
support inferences about the relations among real objects in the world:
objects are represented as solid entities in spatial and causal relations with
each other. This fact gives us another reason to conclude that object-file
representations have conceptual content, beyond the fact that they
cannot be reduced to sensory or spatio-temporal primitives—namely,
that they are inferentially interrelated with other representations that
themselves cannot be reduced to sensory primitives, other representations
that are the outputs of different core systems and of domain-general
learning processes. Thus, they play a central conceptual role, one of the
hallmarks of nonmodular, conceptual processes.

Interim Conclusions: The Six Properties of Core Cognition

Chapter 2 (conceptual content, innateness) and this chapter (conceptual
content, continuity, learning mechanism, long evolutionary history)
have sketched the current state of evidence that object representations
exemplify the features of systems of core cognition. The only feature
not yet discussed is iconic format. I take up the issue of the format of
representation of symbols in core cognition in chapter 4. Here, I consider
two different challenges to the core cognition hypothesis. The first is
theoretical: one might question just how cognitive systems of representation
with these six properties are. The second is empirical: one might question
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the evidence, especially from the violation-of-expectancy methods that are
drawn upon so heavily in this literature, that is offered for core cognition.

Challenges to the Core Cognition Hypothesis: What Kind of
Cognition Is Core Cognition?

Some writers (including me, in my earliest writings on core cognition)
claimed knowledge of objects to be conceptual in a much stronger sense
than I have argued here (e.g., Baillargeon, 1993; Spelke, 1988). These
writers spoke of infants’ “beliefs” that objects persist when occluded,
infants’ “knowledge” that two objects cannot occupy the same place at
the same time, infants’ “reasoning” and “inferences” about the interac-
tions of occluded objects, and their “surprise” or “puzzlement” at
impossible events. There is nothing inherently wrong with such language
as long as the writer is clear what kinds of representations constitute the
beliefs and knowledge in question, what kinds of computations consti-
tute the reasoning and inference, and what kinds of states constitute the
puzzlement and surprise.

However, most researchers now prefer not to use such highly cog-
nitive language in describing the representations and computations
of young infants because the term “belief” can be taken to imply a
language-like format, that the beliefs are in some sense explicit, and that
the computations carried out over them are logical inferences defined
over propositions. Most researchers who endorse the core cognition
hypothesis do not now see it that way (Carey & Spelke, 1994, 1996;
Gelman, 1990; Leslie, 1994; Scholl & Leslie, 1999). Rather, much of the
knowledge in core cognition is embodied in constraints on the processes
that create the representations of ongoing events. I assume that core
cognition representations are iconic (see chapter 4 for an extended dis-
cussion of representational format) and that the representations that
articulate core cognition are created by modular systems whose com-
putations are constrained by the principles revealed by experiments such
as those reviewed in these pages.

For example, the computations that create representations of
objects’ disappearing behind occluders embody a commitment to spatio-
temporal continuity. This is analogous to the computations that create
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representations of depth from binocular disparity, embodying a com-
mitment to different images in the two eyes arising from a single source.
It would be decidedly odd to say that the 5-month-old infant “believes”
that the images to the two eyes each derive from a single source in the
world and thus provide information about depth, even though that infant
undoubtedly uses that information to create representations of objects in
depth (e.g., Held, Birch, & Gwiazda, 1980). The infant represents depth
and objects, but binocular disparity and the spatio-temporal continuity
constraint are most probably embodied only in the computations that
yield representations of depth and of objects.

That the representations that articulate core cognition are similar to
perceptual representations in all these ways is important to the story I am
telling in this book. Some concepts—those in core cognition—have the
content they do for the same reasons that some perceptual representations
have the content they have. Both types of representations are causally
connected to the entities in the real world, thanks to perceptual input
analyzers crafted through natural selection. But it is equally important to
the story I am telling here that at least some of the representations that
articulate core cognition, such as the object-files themselves, have con-
ceptual content. It is for this latter reason that I use the term “cognition”
in the name I call these core representational systems.

Empirical Challenges to the Core Cognition Hypothesis

In addition to the theoretical challenges to the core cognition hypothesis,
there have been empirical challenges. Many researchers in the field reject
the evidence from looking-time studies that are the main source of
evidence concerning young infants’ mental representations. Because the
general points that the skeptics raise are excellent ones, it is worth laying
them out and thinking about them. The criticisms boil down to two
observations that are undoubtedly right: (1) infants’ looking patterns are
determined by many factors in addition to responses to violations of
expectancy, and it is difficult to rule out alternative interpretations of the
patterns of looking obtained in any given experiment; (2) the very late
emergence of some explicit representations (representations that can
guide action, for example) of knowledge putatively contained within
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core cognition raises questions about the very existence of core cogni-
tion. Let me take up these two objections, in turn, focusing on knowl-
edge of solidity as a case study.

Alternative Explanations of the Looking-Time Patterns in the Solidity
Experiments

The first objection to inferences from looking-time studies draws on the
observation that infants’ attention is drawn not only by violated expec-
tancies but also by simple perceptual novelty or familiarity—and, even
more basically, by intrinsic perceptual preferences. Thus, any looking-
time study must control for these latter bases of looking adequately before
patterns of attention may be taken as reflecting sensitivity to a violated
expectancy. The critics claim that the controls are not adequate and that
the observed patterns of looking reflect simple perceptual preferences or
familiarity/novelty preferences.

We can see how this debate plays out by considering Spelke’s solidity
experiments (Spelke, Breilinger, Macomber, & Jacobsen, 1992). In those
experiments, 4-month-old infants were habituated to an object’s being
lowered behind a screen, after which the screen was removed, revealing
the object on the stage floor (see Figure 3.9). In the test trials, a solid shelf
was introduced into the apparatus, the screen was replaced, and the object
was lowered, as before, behind the screen. The screen was then removed,
revealing either a possible outcome of the object resting on the shelf (A), or
an impossible outcome of the object resting on the stage floor as before,
apparently having passed through the solid barrier (B). Infants looked
longer at the impossible outcomes, suggesting that the models infants build
of the events unfolding before them are constrained by the principles that
one object cannot pass through the space occupied by another.

Critics of these studies have suggested that the outcome in which the
object appears enclosed (between the shelf and the apparatus floor) may be
more visually interesting to infants than the outcome in which the object is
outside, perhaps because of greater contour density. Of course this is
possible, but all experimenters using these techniques are aware of such
possible confounds and take care to eliminate them. Often, baseline
conditions involve showing infants just the outcomes of a series of test
trials, thereby establishing whether there are intrinsic preferences. There is
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no baseline preference for the outcome in which the object appears
enclosed.

A slightly different line of criticism relies on novelty preferences
rather than intrinsic preferences. Remember, infants were first habituated

Screen raised, ball dropped Screen dropped

Screen raised, ball dropped

Screen dropped

Expected outcome Unexpected outcome

Screen dropped

Habituation

Figure 3.9. Schematic depiction of Spelke studies of infants’ representation of object
solidity, or the principle that one object cannot pass through the space occupied by
another object. Redrawn from Spelke, E. S., Bilinger, K., Macomber, J., & Jacobsen,
K. (1992). Origins of knowledge. Psychological Review, 99, 605–632, with permission of
the American psychological Association.
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to the object’s being lowered onto the stage floor, after which the barrier
was introduced for the test trials. Spelke reasoned that the impossible
outcome is actually perceptually more similar to the familiarization
outcome (because the object is in exactly the same position), so that a
novelty preference would support the opposite results to those obtained.
Critics have replied that it may as well be just the opposite: an object
resting on the first surface reached from the direction from which the ball
has come may be more perceptually similar to the familiarization out-
come because the object is not enclosed but is resting on a surface, and
thus the preference for the impossible outcome may merely be a novelty
preference. Again, although this is certainly possible, it is possible to
control for and Spelke did so. She included a condition in which the
object was placed in position by hand either on the shelf or below the
shelf. The familiarization/test sequences were exactly the same as in
the solidity experiments (i.e., several familiarizations with the object’s
having been placed on the stage floor, the barrier being introduced, and
then alternating test trials in which the object is either placed on the shelf
or on the stage floor). In this case, there was no preference for the one
outcome over another, ruling out a novelty preference for the impossible
outcome in the experiments in which the motion of the object would
have violated the solidity constraint.

Although researchers using the violation-of-expectancy paradigm
attempt to rule out perceptual preference or perceptual novelty artifacts, it
is always possible that somebody will find one that accounts for one,
or even many, results in the literature. Looking times are certainly sensitive
to such factors. But in evaluating the evidence for young infants’ repre-
sentations of object motion being constrained by the principle that one
object cannot pass through the space occupied by another, we must
consider the huge amount of convergent evidence from many different
paradigms. Consider the Baillargeon rotating-screen studies (see Figure
2.1, chapter 2), the Baillargeon box-on-track experiments (Baillargeon,
1986), the Baillargeon sand-in-cylinder experiments (Baillargeon, 1995),
the Hespos and Baillargeon rod/cylinder experiments (see Figure 2.6,
chapter 2), and the Spelke experiments described above. Convergent
evidence from many different studies, each with different controls for
perceptual preferences or perceptual novelty, ultimately convinces me of
the case.
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I will not belabor discussion of the controls in each study I cite.
Nonetheless, I would like to reassure the skeptical reader by going
through one design in detail—the Sue Hespos and Renée Baillargeon
solidity study mentioned in chapter 2; see Figure 2.6 for a diagram of the
test events in this study. Recall that 2-month-olds looked longer at an
impossible event in which a rod apparently was lowered through a
remembered lid on a container than when it was lowered into an empty
container. Hespos and Baillargeon successfully controlled for novelty and
familiarity effects. In these studies, the events began with the rod’s being
picked up and raised over the cylinder. This familiarized the infants with
the hand, the rod, the motion of the rod, and so forth, but it provided no
information about the upcoming test events. After familiarization, in a
between-participants design, the cylinder was turned, revealing either a
closed top (half of the participants) or an open cylinder (half of the
participants; see Figure 2.6). The rod was then inserted into the cylinder
(impossible outcome for those participants shown the closed top and
possible outcome for the other group; these are the test trials depicted in
Figure 2.6). Those infants for whom the event violated the solidity
constraint looked over twice as long as did those for whom it did not.

Consider this design. Both the open-cylinder and the closed-
cylinder groups saw exactly the same events during familiarization and
during test; the only difference was what was revealed when the cylinder
was turned. Since there was only one outcome during the test trials of the
experimental condition (the rod was lowered into the container), a
simple perceptual preference for one outcome over another could not
have accounted for the results. The familiarization events in both the
experimental and control baseline conditions were identical (the rod was
lifted and held above the container), so greater perceptual novelty of one
of the outcome events relative to the habituation events could not
account for the results. A final possibility is that the closed top was more
interesting than the open tube, and so infants looked longer during the
test events in the closed-top condition just because of that. Hespos and
Baillargeon controlled for this as well, running two more groups in a
series of test trials that were identical to the familiarization trials (the
rod remained perched above the cylinder). Between the familiarization
and test trials, half of the participants were exposed to the open container
and half to the closed. But during the test trials, the rod remained raised
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Baseline Events

Open-container Condition

Closed-container Condition

Figure 3.10. Schematic depiction of baseline condition in Hespos & Baillargeon (2001) solidity study. Reprinted
from Hespos, S., & Baillargeon, R. (2001). Reasoning about containment events in very young infants. Cognition,
78, 207–245, with permission from Elsevier.



above the cylinder (see Figure 3.10). There was no difference between
the groups; having seen a closed tube did not by itself cause greater
interest in the events. As far as I can see, this leaves no explanation for the
pattern of looking other than the violation of the solidity constraint.

It is beyond the scope of this book to include all the controls for
perceptual preferences and perceptual novelty/familiarization effects that
have been included in the experiments I report. I advise the interested or
skeptical reader to look at the research papers I cite. This is not to say that
the controls have always been adequate; there are no guarantees in sci-
ence. No doubt, the interpretations of some particular studies will be
modified in the future, as alternative interpretations of the observed
patterns of looking times are corroborated. Nonetheless, the conclusions
I draw from the experiments cited in these pages are supported by a great
deal of convergent evidence from many different paradigms.

Looking Time versus Reaching

As we saw in chapter 2, infants’ failure to reach for hidden objects has led
many researchers to doubt that young infants actually do represent
objects as existing behind barriers. Chapter 2 laid out my response to
these doubts. Performance limitations, owing to immature executive
function or to parameters of the motor system that guides the reach,
partly account for failures to search in such tasks. Development within
these systems can be independent of the capacity to form representations
of hidden objects.

However, sometimes success in looking-time procedures predates
success in reaching procedures by a matter of years! These dramatic age
lags have cast doubt on the conclusions from the infant studies. How
can infants “know” something that 2-year-olds cannot demonstrate
knowledge of? At the very least, such dramatic lags will require different
explanations from the accounts of performance limitations appealed to
above.

The solidity studies provide a particularly striking example of a much
earlier manifestation of understanding in looking-time procedures than in
procedures that rely on search. Two-month-olds succeed in the looking-
time studies, whereas it is not until over 2 to 3 years of age that children
succeed in manual-search versions of the same tasks (Hood, Carey, &
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Prasada, 2000; Berthier, DeBlois, Poierier, Novak, & Clifton, 2000).
Bruce Hood, Sandeep Prasada, and I carried out four object-search
studies closely modeled on the Spelke shelf studies, and in all four cases,
24-month-old toddlers (2-year-olds) failed.

Let’s consider one of these studies as an example. Toddlers were
familiarized with an object’s being dropped onto a stage floor. Then a
barrier was introduced above the stage and a screen with two doors, one
at barrier level and one at floor level, was introduced in front of the
apparatus (see Figure 3.11). The object was dropped behind the screen,
and the infant was allowed to search for the object. Two-year-olds
searched at the floor level, where they had seen the object before, and not
at the barrier level, where the object must be if its motion was arrested by
the barrier.

The studies of Rachel Keen (formerly Clifton) and her colleagues are
all the more striking (Berthier et al., 2000; Butler, Berthier & Clifton,
2002; Mask, Novak, Berthier, & Keen, 2006; Shutts, Keen, & Spelke,
2006). Their task is more difficult, involving four doors and four possible
locations of the barrier (see Figure 3.12). But unlike in our studies, they
gave the child considerable training. The child watched the ball roll
down the incline with the doors open and the barrier placed at each of
the four locations, seeing it stop in front of the barrier each time. Also,
they were given multiple trials, with feedback. In our studies, 30-month-
olds succeed, whereas in Keen’s, robust success is not obtained until 36
months of age. This is almost three years after success at the looking-time
studies by 2-month-olds!

A first response to these studies is to doubt the infant work. How can
2-month-olds know that one object cannot pass through another when
2-year-olds search for an object as if it had fallen right through a solid
shelf? Some of the explanations offered in chapter 2 for the A-not-B error
in search tasks probably play a role in this case as well. The toddler’s
search shows the influence on search of previously viewed locations of
the object. Thus, part of the answer lies in developing executive function,
which must adjudicate between competing representations of locations.
Perhaps there is further development of the system of planning that
computes over representations in motor work space. But I do not think
this is the whole story, because of the extreme magnitude of the gap. The
difference between 2 months and 3 years suggests a principled difference
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in the kinds of knowledge being tapped in these two different paradigms.
Indeed, I believe there are two kinds of knowledge involved here:
within-module encapsulated representations and explicit representations
that are output of the perceptual device that creates representations of
object-files. Only the latter can be drawn upon in the service of pre-
diction.

Keen and her colleagues have shown that the toddlers who fail at her
four-door task are not encoding the position of the shelf relative to the

Familizarize (3 times)

Introduce shelf Introduce occluder

Search

Figure 3.11. Schematic depiction of toddler reaching version of Spelke infant
solidity experiment (Hood, Carey, & Prasada, 2000). Redrawn from Hood, B.,
Carey, S., & Prasada, S. (2000). Predicting the outcomes of physical events: Two-
year-olds fail to reveal knowledge of solidity and support. Child Development, 71(6),
1540–1554, with permission from Blackwell Publishers.
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doors, and thus are not using that information in predicting the location
of the ball. Thus, the 2-year-olds’ representations of object motion may
respect the solidity constraint, but 2-year-olds fail to deploy the relevant
information to plan a reach. Why, then, do they succeed in the infant
studies? In the infant studies, infants are shown an object falling behind a
screen, and then the screen is removed, revealing the location of the
object relative to the shelf. At this point, the infant need only draw upon
a memory representation of the motion of the ball (falling from above) to
recognize that the path of motion would have passed through the shelf.
This violates a constraint on object motion, drawing attention. On this
view, the child is not predicting where the ball is, relative to the shelf,
when both are hidden in the infant studies; the violation is detected only
upon seeing the final disposition of the event, where the shelf and the
location of the ball are both visible and available to reconstruct the path
the ball must have taken through the shelf.

What changes between 24 and 36 months, such that the child now
succeeds? We do not know the answer to that question. There are several

Figure 3.12. Toddler choosing the correct door in the 4-door reaching version of
the Spelke solidity studies. Berthier, N. E., DeBlois, S., Poirier, C. R., Novak, M. A.,
& Clifton, R. K. (2000). Where’s the ball? Two- and three-year-olds reason about
unseen events. Developmental Psychology, 36(3), 394–401. Reprinted with permission
from American Psychological Association.
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possibilities, not mutually exclusive. First, the child may come to
explicitly represent the spatial relations among all of the objects behind
the screen, aided perhaps by explicit spatial language. Second, the prin-
ciple that objects do not pass through the space occupied by other objects
may become explicitly formulated by the child, allowing a prospective
prediction. Third, developments within executive function help the
child overcome perserverative responses. Although it would
be interesting to work this out, the important suggestion I am making
here is that the toddler failures do not undermine the interpretation of the
infant successes, for the toddler experiments do not draw on the same
within-module computations that the retrospective infant experiments
do. I suggest there are two kinds of knowledge at stake here: that
embodied within module in the form of constraints on model building
and that represented in terms of symbols that are input to central rea-
soning processes.

Conclusions

My goals in this chapter were twofold. My first goal was to show that
infants’ knowledge of objects displays several of the hypothesized
properties of core cognition. Representations of objects are created by
modular, encapsulated, perceptual input analyzers that have a long
evolutionary history, extending deep into human beings’ primate heri-
tage. These representations continue to articulate our representations of
the world throughout life. (The format of representation will be discussed
in chapter 4.) Only one signature property of core cognition has not yet
been fully explored—the existence of domain-specific learning
mechanisms.

My second goal in this chapter, as well as my goal in chapter 2, was to
explore what kind of cognition core cognition is. Object-files are con-
ceptual representations, in that they cannot be defined in perceptual
primitives and as shown by their accessibility and rich conceptual role (of
which much more will be said in chapters 4–6). However, they are also
perceptual representations, being the output of innate, modular, input
analyzers and having iconic format. Both features of these representations
are important to the role core cognition plays in conceptual
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development. As the empiricists understood, we have the beginnings of a
causal theory of reference for perceptual representations. The requisite
causal connection between entities in the world and symbols in the head
is guaranteed by natural selection. Thus, we have the beginnings of a
theory of how the symbols in core cognition come to have the
content they do. But core cognition also provides the starting point for
conceptual development, and to play this role, it is crucial that it is
conceptual in the ways that it is.

The next three chapters characterize two additional systems of core
cognition—one for representing intentional agency and one for repre-
senting number—and consider the nature of causal representations that
centrally integrate the output of distinct core cognition systems. I then
turn to the question of how core cognition is transcended in the course of
cognitive development, to how children create fully conceptual repre-
sentational systems with none of the properties of core cognition.

NOTE

1. Baillargeon, 2001; Carey & Spelke, 1996; Gallistel, 1990; Gelman, 1990;
Leslie, 1994; Spelke, 2000. Spelke calls the systems of knowledge “core knowledge”
rather than “core cognition.” Because knowledge is, roughly, justified true belief, the
term “knowledge” implies more than I want—that the representations are veridical
and warranted.
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4
Core Cognition: Number

Representations of number play a huge role in human mental life, as they
are central to mathematics and science, as well as to modern commerce.
Less obviously, representations of number articulate human language. In
languages like English, those with a count/mass distinction, every sen-
tence we speak requires us to make quantificational commitments. Are
we speaking about individuals or nonindividuated entities, one or more
than one?

Accounting for the origins of human numerical abilities seems to
pose a formidable challenge. Number is a quintessential abstract entity.
Piaget believed that numerical representations are built from logical
capacities (the capacity for linear order and the capacity to represent and
operate over sets), logical capacities that were not themselves constructed
until the early school years. Accordingly, he believed that children
could not represent number until then and, indeed, offered his famous
work on number conservation as evidence for his view (Piaget, 1952).

Chapters 2 and 3 presented data that undermine Piaget’s position.
The object-file system of representations embodies criteria of individu-
ation and numerical identity for objects, and infants create working-
memory models that distinguish sets with two numerically distinct
objects from those with three objects or one object. As we will see in this
chapter, infants also create working-memory models of sets of different
types of individuals—individual events, individual tone bursts—and these
working-memory models have many structural similarities to those that
represent small sets of objects. As I discuss at length below, these “indi-
vidual file” representations are numerical in ways that conflict with
Piaget’s position. Furthermore, there is another core cognitive system
that more directly represents number and hence is flatly incompatible
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with Piaget’s view—the system of representation Dehaene (1997)
calls the “number sense.” The number sense is a paradigm example of
core cognition. Thus, this chapter lays out the evidence for two
distinct systems of core cognition with numerical content, contrasting the
two.

Core System 1: Analog Magnitude Representations
of Number

Human adults, human infants, and nonhuman animals deploy a system of
analog magnitude representations of number. Number is represented by a
physical magnitude that is roughly proportional to the number of indi-
viduals in the set being enumerated. The following is an external analog
magnitude representational system in which lengths represent number:

number symbol
1: —

2: ——

3: ———

4: ————

7: ———————

8: ————————

and so on.
A psychophysical signature of analog magnitude representations is

that the discriminability of any two magnitudes is a function of their ratio;
that is, discriminability is in accordance with Weber’s law. Examining the
external analogs above, it is easy to see that the lengths that represent
numbers 1 and 2 should be more discriminable than are those that rep-
resent 7 and 8 (what is called the magnitude effect). Similarly, it should be
easier to discriminate the length that represents 1 from that representing 3
than to discriminate the length that represents 2 from the one that
represents 3 (what is called the distance effect). And indeed, studies of
numerical discrimination robustly reveal both magnitude and distance
effects, which follow from Weber’s law (Dehaene, 1997; Gallistel, 1990).
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Evidence for Analog Magnitude Representations of Number in Animals

I will provide evidence for two separate claims: (1) that animals represent
number, and (2) that one system of number representation is analog. To
establish the first, I must show that animals have representations with
cardinal values in their extensions, and that these representations have
number-relevant inferential roles. That is, I must show that animals dis-
criminate sets on the basis of cardinal value (rather than other features of
the arrays correlated with number, such as their total surface area or
volume) and that at least some number-relevant computations are sup-
ported by the representations that underlie such discriminations. To
establish the second, I need to show that the representations in question
reveal the psychophysical signatures of analog magnitude representations.
In particular, I will be at pains to show that they conform to Weber’s law.

In this section I provide more data than usual because, for those who
are practiced at reading graphs, the data tell a story better than words can.
Figure 4.1 shows data from an experiment in which rats were trained to
press a bar a given number of times before a feeder was armed. What is
plotted is the number of bar presses before the rat checked the feeder.
Panel A shows that the mean of each distribution of number of presses is
just a little higher than the correct number for that condition (4, 8, 16,
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Figure 4.1. Data from Platt & Johnson (1971). Each curve shows the probability
distribution of number of presses before the rat checked whether the feeder was
armed. N ¼ the correct number of presses needed to arm the feeder. Reprinted from
Platt, J. R., & Johnson, D. M. (1971). Localization of position within a homogeneous
behavior chain: Effects of error contingencies. Learning and Motivation, 2, 386–414,
with permission from Elsevier.
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or 24), as if rats were tracking the number of presses and were conservative.
What is also shown is that the standard deviation around those means
becomes greater as the means do. These data exhibit what is called “scalar
variability”: the ratio of the standard deviation to the mean is a constant
(Platt & Johnson, 1971).1 Scalar variability is a reflection of Weber’s
law that the discriminability of two magnitudes is a strict function of
their ratio.

These data establish that some analog magnitude representation is
underlying the rats’ decision of when the feeder is likely to have been
armed. However, they do not unequivocally show that it is an analog
magnitude representation of number of presses, because in this study the
number of bar presses was confounded with other correlated quantities,
such as the total amount of effort expended or the total time taken for a
sequence of presses. Others have deconfounded these variables, showing
that number is indeed represented. Here I sketch two relevant studies,
and I refer the interested or skeptical reader to the excellent reviews in
Dehaene’s The Number Sense (1997) or Gallistel’s The Organization of
Learning (1990).

In another landmark study of animal number representations, Russell
Church and Warren Meck (1984) taught rats a discrimination between
two sequences of tones. Rats were trained to press one bar if presented
with a sequence of two tones, each 1 second long, and another if pre-
sented with a sequence of eight tones, each 1 second long. Rats readily
learned this discrimination, but again, this does not tell us on what basis
they were discriminating, for the stimuli differed both in number of tones
and in total duration of the sequences. The rats were then presented with
a series of discriminations in which the stimuli differed only in number,
holding total duration constant, or only in duration, holding number
constant (see Figure 4.2). They generalized the learned discrimination in
both cases, showing that they had represented the original stimuli in terms
of both their numerical differences and their temporal differences. The
other result of note was that the crossover point in both series was at the
geometric mean. That is, rats experienced four tones and two tones as the
same distance from each other as they experienced eight tones and four
tones, and they experienced 4 seconds and 2 seconds as the same distance
from each other as 8 seconds and 4 seconds. Discriminability is a function
of ratio, as dictated by Weber’s law.
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As a final example, Elizabeth Brannon and Herb Terrace (1998)
demonstrated that Rhesus macaques are sensitive to number and represent
sets differing in cardinal value as numerically ordered. These researchers
began with Terrace’s previous demonstrations that Rhesus macaques can
learn to order arbitrary sets of simultaneously presented stimuli. Presented
with an array of four objects randomly distributed on a touch screen on
each trial—for example, a red circle, a brown table, a black cat, and a blue
flower—the monkeys can learn to touch the stimuli in a specified order.
Thus, Terrace’s earlier work suggests that the capacity to represent serial
order is itself part of our evolutionary endowment and does not await the
end of Piaget’s stage of “preoperational” thought for its emergence
(Swartz, Chen, & Terrace, 1991; Terrace, Son, & Brannon, 2003).

100%
left

2
3
4
5
6

8
7

2
3
4
5
6

8
7

100%
right

50%

Number discrimination

Duration discrimination

100%
left

100%
right

50%

Figure 4.2. Data from test trials in Church & Meck (1984). Top graph: number of
tones held constant, total duration of tones varied between 2 and 8 seconds. Bottom
graph: total duration of tones held constant, number of tones varied between 2 and 8.
Church, R. M., & Meck, W. H. (1984). The numerical attribute of stimuli. In H. L.
Roitblatt, T. G. Bever, & H. S. Terrace (Eds.), Animal Cognition (pp. 445–464).
Hillsdale, NJ: Erlbaum. Reprinted with the permission from Taylor and Francis Ltd.
(http://www.tandf.co.uk/journals).
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Brannon and Terrace established that Rhesus’s number representations
are intrinsically ordered (Brannon & Terrace, 1998). I will illustrate with
data from two monkeys, Rosencrantz and Macduff. They were first
taught to do the ordered-list task with arbitrary lists such as, “first circle,
then table, then cat, then flower.”Of course, whenever they were shown
four new stimuli, they could have no idea what order they were supposed
to touch them in, so there was an extended period of trial and error before
they learned the order. After Rosencrantz and Macduff became good
at that trial-and-error discovery process, Brannon and Terrace started
giving them lists such as those in Figure 4.3. As you can see, each list
consisted of four pictures containing, respectively, sets with one, two,
three, and four items. In each list, the order the monkeys were supposed
to press was 1, 2, 3, 4. Across all the lists, all continuous variables con-
founded with number were controlled for. At the beginning, the mon-
keys treated each list the same as any arbitrary list, requiring extensive trial
and error to learn the order called for on that list. But over the course of
learning 35 such lists, Rosencrantz and Macduff got faster and faster. This
could be because they were becoming ever more efficient at the trial-and-
error strategies for learning whatever arbitrary list the experimenter had
in mind, or it could be because they had learned a numerical rule.

To decide between these two possibilities, Brannon and Terrace
gave Rosencrantz and Macduff 150 trials in which they saw new lists only
once, thus preventing any trial-and-error learning. They did as well as on
these lists as on those at the end of the 35 training-sets series, where they
saw each list 60 times. They had learned a numerical rule. But which one?
“Press one object, then two objects, then three objects, then four
objects?”Or “press in order of increasing numerical magnitude?” To find
out, Brannon and Terrace then presented the monkeys with novel trials
including sets of five, six, seven, eight, and nine items. Now the task was
simply to order two stimuli: for example, 2 versus 4, 3 versus 6, or 5 versus
9. Some included numbers within the trained lists, and some were
entirely novel pairs. Each pair was shown only once. Again, both
monkeys transferred the rule to the novel lists including numbers outside
of the training set. Apparently, they had learned the rule, “touch in order
of increasing numerical magnitude.”

Analog magnitude representations of number underlie performance
on this task. Clear evidence for distance effects was observed: accuracy
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was a function of the numerical distance between the stimuli (e.g., the
monkeys’ ability to order 6 and 9 was more accurate than their ability to
order 7 and 8). Recent data from Brannon’s laboratory confirm these
generalizations. Monkeys were trained to touch two arrays in numerical
order; all training pairs were taken from sets of one to nine elements, and
over all pairs other variables were controlled as in the Brannon and
Terrace studies. After training, sets of 10, 15, 20, and 30 were added.
Again, monkeys continued to succeed at the task upon first encountering
these larger sets, and their performance accorded with Weber’s law
(Cantlon & Brannon, 2006).

These experiments are illustrative of many in the literature: animals
studied include rats, crows, pigeons, a parrot, monkeys, apes, and dol-
phins (at least, these are the studies on analog magnitude number
representations I am aware of). These data support the existence of an
evolutionarily ancient representational system in which number is
encoded by an analog magnitude proportional to the number of objects
in the set. These representations support computations of numerical
equivalence and numerical order. There is also evidence that animals can
add analog magnitudes. For example, Rhesus macaques shown four
objects placed behind a screen, followed by another four objects, look

Equal Size

Equal Surface Area

Random Size Random Size, Shape & Colour

Random Size & Shape

Clip Art

Clip Art Mixed

Figure 4.3. Examples of stimulus lists from Brannon & Terrace (1998). From
Brannon, E. M., & Terrace, H. S. (1998). Ordering of the numerosities 1 to 9 by
monkeys. Science, 282, 746–749. Reprinted with permission from AAAS.
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longer if the screen is removed to reveal four objects than if to reveal
eight (Flombaum, Junge, & Hauser, 2005).

In sum, that these analog magnitude representations are number
representations is shown by the fact that they track number rather than
other properties of the attended sets, and by the fact that numerically
relevant computations are defined over them.

Evidence for Human Infants’ Analog Magnitude Representations of
Number

In the past five years, four different laboratories have provided unequi-
vocal evidence that preverbal infants form analog magnitude repre-
sentations of number (Brannon, 2002; Brannon, Abbot, & Lutz, 2004;
Lipon & Spelke, 2003, 2004; McCrink &Wynn, 2004a; Wood & Spelke,
2005a; Xu & Spelke, 2000; Xu, Spelke, & Goddard, 2005). The first
paper in this flurry of studies is by Fei Xu and Elizabeth Spelke, who
solved the problem of how to control for other possible bases of judg-
ment (cumulative surface area, element size, density) in a large number
habituation paradigm. Xu and Spelke habituated 6-month-old infants
to displays containing 8 dots or to displays containing 16 dots (see
Figure 4.4). Possible confounds between number and other variables
were controlled either by equating the two series of stimuli on those
variables or by making the test displays equidistant from the habituation
displays on them. Habituated to 8-dot displays, 7-month-old infants
recovered interest when shown the novel 16-dot displays, while gener-
alizing habituation to the novel 8-dot displays. Those habituated to 16-dot
displays showed the reverse pattern. Subsequent studies duplicated this
design (and the positive result) with 16-dot versus 32-dot comparisons and
with 4-dot versus 8-dot comparisons. Thus, the infants showed a sensi-
tivity to cardinal values of sets outside the range of object-tracking
mechanisms, when potential confounds were strictly controlled for.

That analog magnitude representations support these discriminations
is shown by the fact that success is a function of the ratio of the set sizes. In
all of the above studies, in which infants succeeded with a 2:1 ratio, they
failed in comparisons that involved a 3:2 ratio (i.e., they failed to dis-
criminate 8-dot from 12-dot arrays, 16-dot from 24-dot arrays, and 4-dot
from 6-dot arrays). Also, these researchers have found that sensitivity
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improves by 9 months of age. Infants of this age succeed at 3:2 com-
parisons across a wide variety of absolute set sizes, but fail at 4:3 com-
parisons.

These baby experiments involve dot arrays. As reviewed above,
animals create analog magnitude representations of number of sounds,
number of bar presses, and number of key pecks. Infants also represent
the cardinal values of sets of individuals that are not visually specified.
Jennifer Lipton and Elizabeth Spelke (2003, 2004) showed that 6-month-
old infants discriminate 8 from 16 tones, and also 4 from 8 tones, when
continuous variables are controlled in a manner analogous to the Xu and
Spelke studies, and they fail to discriminate 8-tone from 12-tone

Habituation

Test

OR

Figure 4.4. Sample habituation sequences and test stimuli from Xu & Spelke (2000).
Reprinted from Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-
month old infants. Cognition, 74, B1–B11, with permission from Elsevier.
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sequences or 4-tone from 6-tone sequences. The alert reader might
wonder how one does a looking-time study when the stimuli are a stream
of tones. Basically, the sequences of tones are played from one of two
speakers, each to a different side of the infant, and if the infants are
interested in what is being played, they look to that speaker, continuing
to attend to it even after the sequence is completed. Thus, looking times
can reflect interest in this paradigm, and if infants notice a difference in
the number of tones coming from a speaker, their attention is drawn to it.

Not only do 6-month-old infants create analog magnitude repre-
sentations of number in a sequence of tones, their sensitivity to numerical
differences is in the same ratio as for arrays of dots (between 2:1, where
they succeed, and 3:2, where they fail). Also paralleling the results with
dot arrays, by 9 months infants succeed at this latter ratio, distinguishing
8-tone sequences from 12-tone sequences and distinguishing 4-tone
sequences from 6-tone sequences. Succeeding at 3:2 ratios, irrespective of
set size, infants this age fail at 5:4 ratios, failing to distinguish 5-tone
sequences from 4-tone sequences and also 10-tone from 8-tone
sequences. Thus at each age, sensitivity is a function of the ratios of
the number of elements in the sets to be compared, with older infants
showing greater sensitivity (3:2 at 9 months; 2:1 at 6 months; Lipton &
Spelke, 2003, 2004).

Furthermore, infants also represent the number of jumps in a
sequence of jumps with the same sensitivity. Justin Wood and Elizabeth
Spelke (2005a) showed that 6-month-olds distinguish 4-jump sequences
from 8-jump sequences, but not from 6-jump sequences, whereas
9-month-olds succeed at 4-jump versus 6-jump comparisons.

In all of the above studies we can be confident that it is number the
infants are responding to, because every other variable is equated either
across the habituation stimuli or across the test stimuli. In these studies,
the child’s attention is drawn when there is a different number of dots,
jumps, or tones in a test set from the number in each of the habituation
sets, and discrimination follows Weber’s law. Thus, the child is using the
analog magnitude system to compute numerical equivalence. Of course,
if the analog magnitude representations underlying performance in these
habituation studies are truly numerical representations, number-relevant
computations other than establishing numerical equivalence should be
defined over them, and indeed this is so.
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Elizabeth Brannon showed that 11-month-old infants represent
numerical order among sets sets. Infants were habituated to sequences of
three arrays, always increasing in number by a ratio of 2: 1 (e.g., 2, 4, 8;
4, 8, 16; 1, 2, 4). Continuous variables were controlled as in the Xu and
Spelke studies. After habituation, infants were shown a novel increasing
sequence (3, 6, 12) or a decreasing sequence (12, 6, 3). They generalized
habituation to the former and dishabituated to the latter. Another group
of infants were habituated to decreasing sequences; they generalized
habituation to the test sequence that decreased in numerical value and
dishabituated to the one that increased (Brannon, 2002).

Finally, Koleen McCrink and Karen Wynn (2004a) showed that
9-month-olds can manipulate sets of objects in the analog magnitude
range to support addition and subtraction. Shown five objects move
behind a screen, followed by another five, infants look longer if the
screen is removed, revealing a set of five than if a set of ten is revealed.
Conversely, if the first set was ten objects, and five objects were seen to
leave, infants looked longer if, upon the screen’s removal, ten were
revealed. These objects were each constantly expanding and contracting
so that it was possible to control for summed continuous variables as a
basis of response. McCrink and Wynn also showed that infants are sen-
sitive to the ratio between two sets of dots; habituated to arrays of dots of
two colors, such that there were always two times as many red dots as
blue dots, infants dishabituated to arrays when the ratios were reversed
(McCrink & Wynn, 2004b).

In sum, analog magnitude representations of number are available at
least by 7 months of age. Preverbal infants represent the approximate
cardinal value of sets, and compute numerical equivalence, numerical
order, addition, subtraction, and ratios over these representations. Given
the ancient evolutionary history of analog magnitude number repre-
sentations, it is very likely they are the output of innate perceptual
analyzers.

Continuity Through the Life Span

Under a wide variety of conditions, adult humans create analog mag-
nitude representation of number of individuals. For example, analog
magnitude representations of number are deployed when participants
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must estimate the number of individuals in large sets under conditions
when they cannot or do not count. For illustration, I draw on recent
experiments by Hilary Barth, Nancy Kanwisher, and Elizabeth Spelke
(2003). Barth and her colleagues displayed arrays of large numbers of dots
(20–200), with total area covered, density of dots, and size of dots varying
from array to array. Arrays were displayed sequentially (e.g., 35 followed
by 60; 120 followed by 95). The participants’ task was to indicate whether
the second array was numerically larger or smaller than the first array.
Participants could do this task. The reaction times and accuracies were
predicted by the ratios of the numbers; 20 was discriminated from 30, as
was 40 from 60, as was 80 from 120. These numbers way exceed the set-
size limits on parallel individuation, and performance respects Weber’s
law; thus, we can be fairly confident that analog magnitude representa-
tions underlie performance.

Barth found parallel results when the stimuli were sequences of tones
or flashes of light, when these sequences were also constructed to control
other dimensions of the stimuli (e.g., total length of the sequence, density of
the individuals, total amount of energy, length of individual tones/flashes).
Thus, like infants and nonhuman animals, human adults create analog
magnitude representations of numbers of quite different kinds of individuals.

Two further results bolster the conclusion that these are number
representations. First, there was near perfect intermodal transfer. When
the task was changed such that the first stimulus was a sequence of tones
or light flashes and the second stimulus was an array of dots, participants
could discriminate the numbers, indicating which one was greater, with
the same accuracy, reaction times, and Weber fraction as when both
stimuli were arrays of dots. Furthermore, in addition to supporting
computations of more/less, analog magnitude representations support
least four other number-relevant operations: addition, subtraction,
multiplication, and division. Consider one example from Barth’s studies
as a demonstration of this. Participants were shown two dot arrays col-
ored in blue (e.g., 40, 65) followed by a dot array colored in red (e.g., 75).
The participants’ task was to indicate whether the red array contained
more or fewer dots than the sum of the blue arrays. Participants’ per-
formance on this task was at almost the same level as the previous ones,
with success dictated by the ratio between the total number of blue dots
(the sum of two arrays) and the number of red dots.
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One might object that cognition of symbolic arithmetic might be
playing a role in the tasks that involve computation—perhaps participants
establish approximate cardinal values of the sets via analog magnitude
representations; map them onto verbal numerals; and then add, subtract,
multiply or divide using symbolic arithmetic rules. Although adult parti-
cipants deny doing this, we can ensure that analog magnitude repre-
sentations themselves are supporting the calculations by using participants
who do not yet know the symbolic arithmetic facts—preschool children.
Barth and her colleagues have carried out a series of such studies, showing
that 4- to 6-year-olds succeed at addition, subtraction, multiplication by 2,
and division by 2 (Baron, Barth, & Carey, 2005; Barth et al., 2006).

Barth’s studies illustrate the operation of analog magnitude repre-
sentations of number in tasks that do not involve explicit linguistic
number representations. John Whalen, Randy Gallistel, and Rochel
Gelman (1999) have recently confirmed that human adults have mapped
linguistic numerals onto analog magnitude number representations.
Whalen and colleagues asked participants to tap their fingers a given
number of times (between 7 and 40) without counting. Participants said
that they were not counting, and various details of the data suggest that
they actually were not. For example, the rate of tapping was much faster
than the rate of nonverbal counting, and inter-tap intervals were unre-
lated to the length of the corresponding words. Figure 4.5a shows the
data from one participant; note the linear relation between the number
requested and the number of taps, and note also that the data display
scalar variability (standard deviation linearly related to set size). All par-
ticipants’ data showed these patterns; for everyone, the ratio between the
mean number of taps and the standard deviation was constant. In a
second version of the task, the stimulus was a sequence of tones presented
too fast to count. Counting was also precluded by a concurrent articu-
lation of “the, the, the . . . ” during the stream of tones. The participants’
task was to say the number of tones that had been presented. One par-
ticipant’s data, typical of all, is displayed in Figure 4.5b. Again, the
number produced was a linear function of the number of individuals
displayed and the variability was scalar.

These studies show that adult humans deploy analog magnitude
representations of number, and that they have constructed a mapping
between analog magnitude representations and the verbal integer list.

Core Cognition: Number 129



Indeed, even when questions are posed in terms of the verbal integer lists,
adults often automatically activate the analog magnitude representations
and use them to compute the answer. For example, the reaction time to
say which of two numbers is larger shows the magnitude and distance
effects typical of Weber’s law. It is faster to decide that 6 is less than 8

than to decide that 26 is less than 28 (Dehaene, 1997; Moyer & Landauer,
1967). Dehaene and his colleagues provided a particularly striking
demonstration of this phenomenon. The task they gave to adults was
simple—indicate whether each of these numbers was more or less than
5: 1, 4, 6, 9. Even after thousands of trials, participants were much faster
at saying that 1 was less than 5 than saying that 4 was less than 5, and they
were much faster saying that 9 was more than 5 than saying that 6 was
more than 5. This result is surprising. In counting, we have recited “4, 5,
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Figure 4.5. An individual participant’s data fromWhalen, Gallistel, & Gelman (1999).
Top curve: target is verbal numeral, response is number of taps. Bottom curve: target
is number of tones, response is verbal numeral. Whalen, J., Gallistel, C. R., &
Gelman, R. (1999). Nonverbal counting in humans: the psychophysics of number
representation. Psychological Science, 10, 130–137, with permission from Blackwell
Publishers.
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6” countless times; the order in this list is about as well entrenched as any
we could imagine. Yet when asked to judge which number is larger,
adults apparently activate the underlying mental magnitudes, finding it
easier to discriminate magnitudes relatively far apart on the underlying
number line.

Space precludes reviewing all of the convergent lines of evidence for
analog magnitude representations of number in human adults. The
interested reader should consult Stan Dehaene’s The Number Sense (1997)
and Brian Butterworth’sWhat Counts (1999) for additional evidence from
studies of discalculia following brain damage and from studies of devel-
opmental discalculia, and from imaging studies using PET and fMRI
technology. That analog magnitude representations constitute one sys-
tem of number representations deployed by human adults has been
established beyond any reasonable doubt.

Characterizing the Input Analyzers that Create Analog
Magnitude Representations of Number

Why are analog magnitude representations of number really number
representations? It is not the format of the representation—that they are
analog magnitudes—that makes them so. Animals, including humans,
create analog magnitude representations of many different quantities
(distances, temporal durations, lengths, weight, area, volume, mass, and so
on). Rather, what establishes that these are representations of numbers is
that the animal or infant can track the number of individuals in an attended
set, rather than other variables correlated with number, as reviewed above.
Other relevant data reviewed above is derived from studies of the
numerical computations that are defined over these representations:
computations that establish numerical equivalence, numerical order,
numerical differences, numerical sums, and numerical ratios.

As in any putative system of core cognition, one important challenge
is to characterize the input analyzers that create its symbols. Doing so
provides further evidence concerning the content of those symbols. In
this case, if we understand how analog magnitude representations are
computed from perceptual input, we can see that it is number they are
representing. In fact, there are many different proposals for how the input

Core Cognition: Number 131



analyzers might work, and in each proposal their output is an estimate of
the cardinal value of the attended set (Church & Broadbent, 1990; Church
& Meck, 1984; Dehaene & Changeux, 1993; Verguts & Fias, 2004).

The earliest proposal was the accumulator model of Russell Church
and Warren Meck (1984). Their idea was simple: suppose the nervous
system has the equivalent of a pulse generator that generates activity at a
constant rate and a gate that can open to allow energy through to an
accumulator that registers how much as been let through. When the
animal is in a counting mode, the gate is opened for a fixed amount of
time (say 200 ms) for each individual to be counted. The total energy
accumulated is then a linear function of the number of the individuals in
the set, and thus can serve as an analog representation of number. Meck
and Church’s model seems best suited for sequentially presented entities,
such as bar presses, tones, light flashes, or jumps of a puppet. Gallistel
(1990) proposed that this mechanism functions as well in the sequential
enumeration of simultaneously presented individuals.

The gate is opened for a fixed amount of time for each individual to
be enumerated, irrespective of other properties of that individual, such as
its kind, size, brightness, length, loudness. This is what ensures that the
resulting analog magnitude is a linear function of number rather than
some other variable. Randy Gallistel and Rochel Gelman (1992) pointed
out that the accumulator model is formally identical to the explicit
counting procedures defined over culturally constructed lists of integer
words, “one, two, three, four, five . . . ”. The accumulator model
instantiates the counting principles that ensure that such lists also encode
number. In the accumulator representations, the successive states of the
accumulator play the same role as successive number words in the list—as
mental symbols that represent numerosity. States of the accumulator are
stably ordered, gate opening is in 1–1 correspondence with individuals in
the set, the final state of the accumulator represents the number of items
in the set, there are no constraints on individuals that can be enumerated,
and individuals can be enumerated in any order.

Thus, the accumulator model of the input analyzers that yield analog
magnitudes shows them to be number representations—it instantiates a
counting mechanism. Unfortunately, considerable evidence militates
against the accumulator model. Analog magnitude representations of
number are not constructed by a sequential, iterative process—or at least
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not always. The accumulator model has been most directly tested with
infants. Justin Wood and Elizabeth Spelke (2005b) tested how fast infants
could encode dot arrays in the habituation paradigm discussed above. For
example, 5-month-old infants were presented 4-dot or 8-dot arrays for
1 second each, 1.5 seconds each, or 2 seconds each, and then tested with
new 4-dot or 8-dot arrays. The controls of Xu and Spelke ensured
that success would be based on number. At this age, infants succeeded
only at the 2-second encoding time, but it did not matter whether
the habituation arrays contained 4, 8, or 16 dots. Thus, although it of
course takes time for the child to encode dot arrays in terms of analog
magnitude representations of the number of dots, it takes no longer to
encode 16 dots than 4 dots. This is not consistent with an iterative, serial
encoding process because time for encoding should increase monoton-
ically with N for any iterative counting process.

Studies with adults provide additional evidence against the accu-
mulator model. Subjects are able to discriminate visually presented
numerosities under conditions of stimulus size and eccentricity in which
they are not able to attend to individual elements in sequence (Intriligator
& Cavanagh, 2001). Their numerosity discrimination, therefore, could
not depend on a process that involves a response to each entity in turn,
and thus cannot rely on a counting mechanism. Problems such as these
led Russell Church and Hilary Broadbent (1990) to propose that analog
magnitude representations of number are constructed quite differently
from Meck and Church’s accumulator mechanism, most significantly in
that the Church-Broadbent model does not include an iterative process.
Focusing on the problem of representing the numerosity of a set of
sequential events (e.g., the number of tones in a sequence), they sug-
gested that animals perform a computation that depends on two timing
mechanisms. First, animals time the temporal interval between the onsets
of successive tones, maintaining in memory a single value that approx-
imates a running average of these intervals. Second, animals time the
overall duration of the tone sequence. The number of tones is then
estimated by dividing the sequence duration by the average intertone
interval. Although Church and Broadbent did not consider the case of
simultaneously visible individuals, a similar noniterative mechanism could
serve to compute numerosity in that case as well, by directly representing
the average density of individuals in a set, representing the total spatial
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extent occupied by the set of individuals, and dividing the latter by the
former. Relatedly, Dehaene and Changeux (1993) described a parallel
encoding mechanism that could create an analog symbol for the number
of simultaneously presented visual individuals in a different manner, also
through no iterative process.

The encoding processes in the Church and Broadbent model (as well
as in the Dehaene and Changeux model) differ from the original Meck
and Church accumulator model in a number of important ways. Because
the processes that construct these representations are not iterative, the
analog magnitudes are not formed in sequence and therefore are less
likely to be experienced as a list. Moreover, the process that establishes
the analog magnitude representations does not require that each indi-
vidual in the set to be enumerated be attended to in sequence, counted,
and then ticked off (so that each individual is counted only once). That
these mechanisms do not implement any counting procedure becomes
important to my argument in chapter 8, where I take up the question of
how children learn the meaning of verbal numerals such as “three” and
“seven.” Nonetheless, the proposed input analyzers ensure that the
quantity encoded by the mental magnitude is number; the magnitude
computed is a linear function of the cardinal value of the attended set.

Iconic Format

The system of analog magnitude representations of number exemplifies
most of the features of core cognition I have discussed in chapters 2 and 3.
Number representations are conceptual; their content goes beyond
spatio-temporal and sensory vocabulary. The domain-specific perceptual
analyzers that encode number, as well as the arithmetic computations
defined over the resulting representations, are evolutionarily ancient,
most likely innate, and operate throughout the life span. In addition, this
case study illustrates issues I have not explicitly discussed before, including
specification of the exact nature of the perceptual input analyzers that
create analog magnitude representations of number, a question that
should be addressed as we study any system of core cognition. The
iterative accumulator model was contrasted with parallel models, with
evidence favoring the latter.

134 The Origin of Concepts



Also, this case study exemplifies one of the six features of core
cognition not yet touched upon—that the format of representation is
iconic. Iconic representations are distinguished from language-like
symbolic representations along many dimensions, but one is in being
analog. In analog iconic symbols, such as a realistic picture of a dog
representing a dog, parts of the symbol represent parts of the represented
entity: the ears on the picture represent the ears of the dog, respecting
spatial relations that hold in reality. The word “dog,” in contrast, contains
no information about ears or any other part of a dog. Analog magnitude
number representations are analog in this very sense: the symbol for 3
(———) contains the symbol for 2 (——), respecting the actual
numerical relations between 2 and 3. Just as a full account of any system
of core knowledge will specify the nature of the input analyzers in detail,
so too will it specify the format of representation—what the symbols are
like.

The evidence points to a system of representation in which number
is encoded in the brain by some neural quantity that is a linear or loga-
rithmic function of number. If this is right, we can say more about what is
represented explicitly and what implicitly by this system. The symbols
themselves are explicit. They are the output of the input analyzers and are
available to central processors for a wide variety of computations. They
can be bound to sets of quite different types of individuals. And various
arithmetical computations are defined over them—numerical compar-
isons, addition, subtraction, and ratio computations.

But much of the numerical content of this system of representation is
implicit. There is no explicit representation of the axioms of arithmetic,
no representation that 1–1 correspondence guarantees numerical
equivalence. These principles are implicit in the operation of the input
analyzers and in the computations defined over analog magnitudes,
but they need not be available for the child to base any decisions on.
This case illustrates that once one has a well-confirmed model of some
representational system, one can examine that model to establish
exactly what is represented and how. Analog magnitudes are explicit
symbols of approximate cardinal values of sets. Other numerical content
is embodied in operations that compute over these symbols; that
latter knowledge is not symbolized and thus is not input to further
computations.
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Representations of Sets

Piaget believed that it was not until the end of “preoperational thought”
(around 5 years of age) that children were capable of set-based quanti-
fication. I turn to the set-based quantification that underpins the
semantics of natural language quantifiers in chapter 7, but Piaget’s
insistence that the representations of sets and representations of number
are intertwined is well founded. In the literature on mathematical cog-
nition, analog magnitude number representations are sometimes called
“numerosity” representations, for they are representations of the cardinal
values of sets of individuals, rather than fully abstract number repre-
sentations. There is no evidence that animals or babies entertain thoughts
about 7 (even approximately 7) in the absence of a set of entities they are
attending to. Still, cardinal values of sets are numbers, which is why I
speak of analog magnitude number representations rather than numer-
osity representations.

The analog magnitude number representations discussed in these
pages require representations of sets. At any given moment, an indefinite
number of possible sets to enumerate are in the visual field; attentional
mechanisms must pick out a particular set to enumerate. Analog mag-
nitude representations are predicated of particular sets of individuals, and
thus demand that the animal or infant represent which set is being
assigned which approximate cardinal value. Thus, in addition to the
analog magnitude symbols themselves (e.g., ———, the analog magni-
tude symbol for 3), the baby must at least implicitly represent {box} or
{red object} or {object on table}, where { } designates a set and the
symbol therein represents the kind of entity contained in the set. An
analog magnitude representation of three boxes must at least implicitly
include the information symbolized {box} and ———.

Little is known about how infants or animals select sets as input to
analog magnitude computations, but Justin Halberda and his colleagues
have recently begun to study this issue with adults. In one study
(Halberda, Sires, & Feigenson, 2006), they presented adults with clouds
of dots that were a single color, two colors, three colors, four colors, five
colors, or six colors, all interleaved, for a couple of seconds. After the dots
had been masked, subjects were given a color and asked to report
approximately how many dots of that color there had been. Participants
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could do this for up to three colors, showing that they could select sets of
dots on the basis of color and enumerate up to three sets in parallel.
Performance when there had been four, five, or six colors showed that
participants randomly selected three sets to encode. Thus, the number of
sets that can be simultaneously indexed is subject to the limits on working
memory for individuals (i.e., about three, see chapter 3). In conclusion,
core cognition includes mechanisms for selecting sets of individuals and
quantifying over them with analog magnitude number representations. I
now turn to a second core system with numerical content, in which
number itself is only implicitly represented.

A Second Core System with Numerical Content: Parallel
Individuation of Small Sets

Science moves rapidly, and the infant studies reviewed above came rel-
atively late in the history of studies designed to show that infants are
sensitive to number. The first studies, some 20 years earlier than Xu’s and
Spelke’s studies on analog magnitude representations, concerned small
sets—discriminations of 2 from 3 or 1 from 2. Indeed, in chapters 2 and 3,
I reviewed some of these studies in the service of demonstrating that
infants must represent, at least implicitly, criteria for individuation and
numerical identity. There, I was concerned with the Quinian/Piagetian
thesis that young infants cannot represent the concept object with the
quantificational force of a count noun. In some cases the studies were
originally intended to address the Quinian/Piagetian issues (for example,
Spelke’s split-screen studies concerning spatio-temporal criteria for object
individuation), but they nonetheless required that infants distinguish one
individual from two. In other cases, the studies were intended to show
that the infants were sensitive to number. These include many versus 3
habituation studies and Wynn’s 1 þ 1 ¼ 2 or 1 violation-of-expectancy
studies (Antell & Keating, 1983; Starkey & Cooper, 1980, Wynn, 1992b).
In The Number Sense, Stan Dehaene reviews these experiments as
demonstrations that infants distinguish small sets on the basis of number
of individuals in them. Dehaene then writes as if these data provide
evidence for analog magnitude representations in preverbal infants.
However, before we draw that conclusion, we need evidence that the
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sets are being distinguished on the basis of number rather than other
variables confounded with number, and if so, that analog magnitude
representations underlie the infant’s performance.

Many researchers have suggested that a very different representa-
tional system might support infants’ number sensitivity in most of these
experiments—namely, the object tracking system described in chapter 3
(Feigenson & Carey, 2003; Feigenson, Carey, & Hauser, 2002; Scholl &
Leslie, 1999; Simon, 1997; Uller, Carey, Huntley-Fenner, & Klatt, 1999).
In this alternative representational system, number is only implicitly
encoded; there are no symbols for number at all, not even analog
magnitude ones. Instead, the representations include a symbol for each
individual in an attended set. Thus, a set containing one apple might be
represented as “0” (an iconic object file) or “apple” (a symbol for an
individual of the kind apple) and a set containing two apples might be
represented as “0 0” or “apple apple,” and so forth. These representations
consist of one symbol (file) for each individual, and when the content of a
symbol is a spatio-temporally determined object, it is an object-file. As
discussed in chapter 3, several lines of evidence identify these symbols
with the object-file representations studied in the adult literature on
object-based attention. However, as we shall see below, infants also
create working-memory models of small sets of other types of indivi-
duals, such as sound bursts or events, and so I shall call the system of
representation “parallel individuation” and the explicit symbols within it
“individual-files.” When those individual-files are object-files, I some-
times refer to them as such.

In what follows I will show that the parallel individuation system,
rather than analog magnitude representations, underlies performance on
many small number experiments. I will then further characterize the
parallel individuation system, considering the format of representation
and considering its numerical content. I conclude by contrasting the two
distinct systems of core cognition with numerical content: parallel indi-
viduation and analog magnitude number representations.

There are many reasons to favor individual file representations over
analog magnitude representations as underlying performance in most of
the infant small-number studies. In the interest of space, I present just
two. First, and most important, success on many spontaneous number
representation tasks involving small sets do not show the Weber-fraction
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signature of analog magnitude representations; rather they show the set-
size signature of individual-file representations. That is, individuals in
small sets (sets of one, two, or three) can be represented, and sets outside
of that limit cannot, even when the sets to be contrasted have the same
Weber-fraction as those small sets where the infant succeeds. Second, in
these experiments the computations over individual-files most often
respect other quantitative variables bound to the individuals-files, such as
total volume for objects or total energy for events, rather than number
itself. This fact rules out the possibility that a summary representation of
number such as an analog magnitude underlies success, and it also pro-
vides indirect evidence concerning the format of the representations that
underlie infants’ performance on these studies. Let me take up these two
points in turn.

The Set-Size Signature of Individual-File Representations

As reviewed in chapter 3, the set-size signature of object-file repre-
sentations is motivated by evidence that even for adults there are sharp
limits on the number of object-files that can be simultaneously attended
to and held in working memory. If object-file representations underlie
infants’ performance in some tasks meant to reflect number representa-
tions, then infants should succeed only when the sets being encoded
consist of small numbers of objects. Success at discriminating 1 versus 2,
and 2 versus 3, in the face of failure with 3 versus 4 or 4 versus 5 is not
enough to confirm that object-file representations underlie success, for
Weber-fraction differences could equally well explain such a pattern of
performance. That is, ratios of 3:4 or 4:5 might exceed the sensitivity of
the analog magnitude system at that age. Rather, what is needed is success
at 1 versus 2 and perhaps 2 versus 3 in the face of failure at 3 versus 6—
failure at the higher numbers when the Weber-fraction is the same or
even more favorable than that within the range of small numbers at
which success has been obtained. This is the set-size signature of indi-
vidual-file representations.

This set-size signature of object-file representations is precisely what
is found in some infant habituation studies—success at discriminating 2

versus 3 objects in the face of failure at discriminating 4 versus 6 objects
(Starkey & Cooper, 1980). Similarly, two methods reviewed in chapter 3
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provide vivid illustrations of the set-size signature of object-file repre-
sentations. In one of them, a monkey or an infant watches as each of two
opaque containers, previously shown to be empty, is baited with a dif-
ferent number of apple slices (monkeys) or graham crackers (babies). For
example, the experimenter might put two apple slices (graham crackers)
in one container and three in the other. After placement, the experi-
menter walks away (monkey) or the parent allows the infant to crawl
toward the containers (infant). The dependent measure is which con-
tainer the monkey or baby chooses. The data from both studies reflect the
set-size signature of object-file representations. Monkeys succeed when
the comparisons are 1 versus 2; 2 versus 3, and 3 versus 4, but they fail at 2
versus 5, 3 versus 5, 4 versus 5, 4 versus 8, and even 3 versus 8 (Barner,
Wood, Hauser, & Carey, in press; Hauser, Carey, & Hauser, 2000). A
variety of controls ensured that monkeys were responding to the number
of apple slices placed in the containers, rather than the total amount of
time the apple was being placed in each container, the differential
attention being drawn to each container, or even the total volume of
apple placed in each container (even though that surely is what monkeys
are attempting to maximize). These data show that Rhesus macaques
spontaneously represent number in small sets of objects and can compare
two sets with respect to which one has more objects. More important to
us here, they show the set-size signature of object-file representations;
monkeys succeed if both sets are within the set-size limits on parallel
individuation (up to four for adult Rhesus macaques), and fall apart if one
or both of the sets exceeds this limit.

The infant data tell the same story exactly with respect to the set-size
signature of object-file representations, except that the upper limit is
three instead of four. The lower limit in human babies compared to adult
Rhesus macaques is not surprising, given maturational considerations.
Ten- to 12-month-olds infants succeed at 1 versus 2, 2 versus 3; and
1 versus 3, and fail at 3 versus 4, 2 versus 4, and even 1 versus 4 (Feigenson
& Carey, 2005; Feigenson, Carey, & Hauser, 2002). One:four is a more
favorable ratio than 2:3, but infants fail at 1 versus 4 comparisons and
succeed at 2 versus 3. Not also that five crackers are involved in each
choice, so the total length of time of placements is equated over these
two comparisons. This is a striking result. Infants could succeed at 1 versus
4 comparisons on many different bases: putting four crackers in a bucket
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takes much longer, draws more attention to that bucket, and so on, yet
infants are at chance. Although infants could solve this problem in many
different ways, apparently they are attending to each cracker, creating a
model of what’s in the container that contains one object-file for each
cracker. As soon as one of the sets exceeds the limits on parallel indi-
viduation, performance falls apart. This finding provides very strong
evidence that parallel individuation underlies success on this task.

Convergent data from a second paradigm involving small sets of
objects demonstrate the set-size signature of parallel individuation. Recall
the task in which infants search inside a box into which they can reach but
not see. When 12- to 14-month-old infants have seen one, two, or three
objects placed in a box, they search for exactly one, two, or three,
respectively. But when they have seen four objects placed in the box, they
are satisfied when they have retrieved only two or even only one. That is,
as in the cracker-choice experiments, infants distinguish two from three
(see three hidden, retrieve two, expect another in there), but fail to dis-
tinguish four from one (see four hidden, retrieve one, do not search further
for any more in there; Feigenson & Carey, 2003, 2005). Performance falls
apart when the set to be represented exceeds the limit on parallel indi-
viduation of objects, not when the ratio of objects exceeds some limit.
Again, 4:1 is a more favorable ratio than 3:2, yet infants search for addi-
tional objects having seen three placed in the box and having retrieved
only two, but fail to search for additional objects having seen four placed in
the box and having retrieved only one. This set-size signature of object-file
representations rules out the possibility that analog magnitude repre-
sentations of number underlie the baby’s actions on this task.

Numerical Computations Carried out over Parallel Individuation

That infants’ performance shows the set-size signature of parallel indi-
viduation rather than the constant Weber ratio signature of analog
magnitudes shows that analog magnitude representations cannot subserve
performance on the small number tasks described above. Rather, these
arrays are being represented in short-term memory models that consist of
one symbol for each individual in the small set being represented. These
symbols represent the individuals in the set, not the number of them
(except implicitly, for there is one symbol for each individual). So why I
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am discussing these parallel individuation models in a chapter on core
number cognition?

Two recent studies show that infants carry out computations on
these models that are numerical. They compute 1–1 correspondence
between representations of small sets held in short-term memory,
determining numerical equivalence and numerical order. Lisa Feigenson
and I (2003) showed that it is number of objects represented in the box
that guides search in the task in which infants reach into a box into which
they cannot see to retrieve hidden objects. We carried out a version of
this study in which infants saw two small objects—for example, cars,
placed into the box, one at a time. We then gave them the box, and they
reached in and retrieved a car—either one of the cars they had seen or a
car that was twice the surface area and four times the volume but was
otherwise identical to the cars they saw hidden. Infants showed by their
subsequent search that they expected exactly one more in either case.
They were oblivious to the cumulative continuous variables; their
reaches were guided by how many objects they represented in the box.

In this study, infants must have created a working-memory model of
the set of objects placed in the box. Although they were trying to retrieve
those objects they saw placed there, they had no way of knowing for each
car they retrieved which of the two original objects it was identical to.
They must have created a model of the objects they removed from the
box, ceasing to search when this model matched their model of the
objects placed in the box. And, given their insensitivity to the size of the
objects, the match must have been subserved by a computation of 1–1
correspondence.

Feigenson (2005) also showed that infants are sensitive to number in
a simple habituation task, as long as the individuals in the set are distinct
from one another. Unlike what happened when the individuals are all
identical to each other (see below), when habituated to arrays as in
Figure 4.6, infants dishabituated to the array with a novel number.
Apparently, homogeneity in properties of individuals facilitates compu-
tations of cumulative continuous variables from representations of small
sets of individuals, and heterogeneity of properties focuses attention on
representations of distinct individuals.

An important feature of this study is that it requires an abstract
representation of the sets of objects (sets of one or sets of two). During
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habituation, two different sets of heterogeneous objects were presented.
Thus a working-memory model of two objects must be abstracted from
these habituation arrays, which then must be compared to a model of the
outcome array, which in turn contained very different objects from those
in each of the habituation arrays, on the basis of 1–1 correspondence. The
important conclusion is that 1–1 correspondence computations that
establish numerical equivalence and numerical order can be carried out
over object-file representations held in parallel in working-memory
models, in spite of the fact that in all of the experiments cited in the
following section they are not.

Lack of Sensitivity to Number in Properly Controlled Studies
of “Number” Representations of Small Sets

I turn now to a second conclusive argument that analog magnitude
number representations of number do not underlie success in many infant
small number tasks. Very often, it is actually not number at all that is
driving performance, even though the studies still reveal the set-size

Habituation Test

1 medium object

2 medium object Novel number
Novel continuous extent

Novel number
Novel continuous extent

Familiar number
Novel continuous extent

Familiar number
Novel continuous extent

OR OR

Figure 4.6. Examples of habituation and test arrays from Feigenson (2005): het-
erogeneous arrays. Reprinted from Feigenson, L. (2005). A double-dissociation in
infants’ representation of object arrays. Cognition, 95, B37–B48, with permission from
Elsevier.
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signature of parallel individuation. Besides ruling out analog magnitude
number representations as subserving these tasks, these results provide
suggestive evidence concerning the format of representation in parallel
individuation models.

In all of the habituation studies with small sets in which the indi-
viduals are a constant size, number is confounded with continuous
variables such as total surface area of the stimuli, total contour length of
the stimuli, and so on. For example, in the first number habituation
studies the stimuli were black dots of a single size, so the stimuli with
novel number also had novel total surface area and novel total contour
lengths (Antell & Keating, 1983).2

Several recent habituation studies rigorously controlled for continu-
ous dimensions of variation. Some began with replications of the standard
findings when number and continuous variables such as total surface area
are confounded—infants habituated to arrays of two objects dishabituate
when shown arrays of one or of three objects (and vice-versa). They then
went on to pit number against cumulative values of continuous variables as
a possible basis of response (see Figure 4.7 for a diagram of such a design).
In several studies of this sort, when number is pitted against the cumulative
value of some continuous variable (e.g., total contour length or total front
surface area), after habituation, infants dishabituated to the test stimuli that
were familiar in number and novel in some dimension of spatial extent
and did not dishabituate to the test stimuli that were novel in number and
familiar in spatial extent (Clearfield & Mix, 1999, 2001; Feigenson, Carey,
& Spelke, 2002). Thus, representations of number were not driving the
novelty response in these studies.

One might object that the response in this habituation study may
have been a familiarity preference for common number rather than a
novelty response to changed cumulative surface area. After all, the entities
in the test series were novel in element size, and this change may have led
children to seek a consistent model in terms of number. For this reason,
subsequent studies have adopted a design in which continuous variables
are strictly controlled, so that they cannot be the basis of response. Thus,
any familiarity or novelty preference based on number could emerge.
Figure 4.8 provides an example of one such design. The habituation
stimuli (all sets of two, for example), vary in the size of elements during
habituation. The test stimuli are chosen so that the same number match
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2 small objects

1 large object

Habituation Test

OROR

Novel number
Familiar continuous extent

Novel number
Familiar continuous extent

Familiar number
Novel continuous extent

Familiar number
Novel continuous extent

Figure 4.7. Examples of habituation and test arrays from Feigenson, Carey, &
Spelke (2002) in which one test array matched the habituation array in number and
the other test array matched the habituation array in total front surface area.
Reprinted from Feigenson, L., Carey, S., & Spelke, E. (2002). Infants’ discrimination
of number vs. continuous extent. Cognitive Psychology, 44, 33–66, with permission
from Elsevier.

2 objects of varying
continuous extent, presented sequentially

3 objects of varying
continuous extent, presented sequentially

Familiar number
Novel continuous extent

Familiar number
Novel continuous extent

OR

TestHabituation

OR

Novel number
Novel continuous extent

Novel number
Novel continuous extent

Figure 4.8. Examples of habituation and test arrays from Feigenson, Carey & Spelke
(2002) in which each test array differed from the average total continuous extent
during habituation by the same ratio, Number is the only possible basis of discrim-
ination. Reprinted from Feigenson, L., Carey, S., & Spelke, E. (2002). Infants’ dis-
crimination of number vs. continuous extent. Cognitive Psychology, 44, 33–66, with
permission from Elsevier.
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and the different number match are each equidistant (by ratios) from the
average cumulative value of front surface area of the habituation arrays.
Thus, cumulative surface area is not available as a basis for response. In
these studies, infants respond equally to the two test arrays, showing no
sensitivity whatsoever to the number mismatch (or match; Feigenson,
Carey, & Spelke, 2002). In another design, the controls for continuous
variables adopted in Xu and Spelke’s large number studies are adopted
(see above), again removing any variable but number as a basis for
response. Infants were at chance on sets within the range of parallel
individuation. They showed no preference either for the number match
(a potential familiarity response) or the number mismatch (a potential
novelty response; Xu, 2003). Thus, in all of these studies, infants respond
to novelty in cumulative value of continuous variables, and show no
response whatsoever to the number of elements in the display, even
when continuous variables are removed as a basis for choice.

Consider also Feigenson’s cracker-choice experiments. As described
above, these experiments reveal the set-size signature of object-file
representations. Still open, however, is what quantitative comparison the
infants are making. It seems likely that they would try to maximize the
total amount of cracker, not the total number of crackers. And indeed,
given a choice between one large cracker and two small ones, each one-
fourth the size of the large one, the infants chose the bucket with the single
large one. And given a choice between one large cracker and two smaller
ones, each one-half the size of the large one, the infants were at chance.
Thus, in almost all of the experiments on infant representations of small
sets, using habituation or ordinal choice, cumulative values of continuous
variables are more salient than the number of objects in the set.

These studies have two important upshots. First, infants’ perfor-
mance in these particular studies cannot possibly reflect an analog mag-
nitude representation of number, since infants are not responding to
number at all. Second, they bear on further characterization of the
system of parallel individuation that subserves performance on these tasks.
In the initial formulation of how object-file representations might
underlie infant performance on small number tasks, it was assumed that
models of different sets of objects were compared on the basis of 1–1
correspondence, thus establishing numerical equivalence and/or
numerical more/less (Leslie, Xu, Tremoulet, & Scholl, 1998, Simon,
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1997; Uller et al., 1999), and as shown in the previous section, infants can
carry out such computations. However, they do not always do so.

The studies reviewed in this section motivate a different model for
how object-files might underlie performance. In a revised object-file
model (depicted in Figure 4.9), each individual is represented by a symbol
(an object-file) for that individual, but values on continuous dimensions
for each individual are represented as well, bound to the file that
represents it. Models of arrays are then compared on the basis of
cumulative values of those continuous dimensions. Notice that although
athe infant can sum continuous variables of the individual objects, these
must be available in the model itself. Infants cannot be computing surface
areas of each individual in some analog magnitude format, and keeping a
running sum, because if they were able to do this, there is no reason for
the set-size signature of parallel individuation to emerge. Although it is
not necessary that the symbols be iconic (as in Figure 4.9), I believe this to
be the most parsimonious model of the observed data.

Object Object

Object

Object

Stimuli Object-files (symbolic) Object-files with 
properties bound (iconic)

Object

Object

Figure 4.9. Two versions of the memory structures that might subserve parallel
individuation of small sets of objects. In one, each object is represented by an object-
file that abstracts away from specific features (object). In the other, each object is
represented by an iconic object-file on which shape, color, texture and spatial extent
features have been bound.
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Parallel Individuation of Individuals Other than Objects

As shown by the stock of English count nouns, we individuate many
types of entities other than objects. We can count naps, jumps, drum
beats, hopes, words . . . . Babies also individuate entities other than
objects. Habituation studies show young infants to be sensitive to the
distinction between two- and three-syllable words, as well as to the
distinction between sequences of two and three jumps (Bijeljac-Babic,
Bertoncini, & Mehler, 1991; Wood & Spelke, 2005a; Wynn, 1996). A
close look at the studies involving jumps shows how deeply similar are
the systems for parallel individuation of small sets of events, small sets of
tones, and small sets of objects.

Karen Wynn was the first to show that infants can represent small
sequences of events (jumps of a puppet). She habituated 5-month-old
infants either to two-jump sequences or three-jump sequences. Each
jump was the same height and temporal duration. Total jump sequence
length was controlled in one condition and jump density was controlled
in another. Infants dishabituated to the sequences with novel numbers of
jumps in both conditions. Justin Wood and Elizabeth Spelke (2005a)
went on to show the set size signature of parallel individuation in these
studies; although infants discriminate two from three jumps under these
circumstances, they fail to discriminate two from four jumps. Apparently
infants create mental models of the sequences of jumps, with one “event
file” for each individual jump, and four jumps exceeds the capacity limit.
Wood and Spelke also noted that the total amount of “jump energy” was
not controlled in Wynn’s studies; there was more cumulative jumping in
the three-jump sequences than in the two-jump sequences. They
therefore repeated Wynn’s studies controlling for this variable in the
manner of his controls in his large-number jump-sequence studies
reviewed above. They found that, just as when cumulative variables (total
volume, total front surface area, total perimeter) are controlled in object
habituation studies, infants fail to discriminate two versus three jumps
when total jump energy is controlled.

Just as with object-file models, infants compare models on the basis
of summed continuous variables in preference to 1–1 correspondence
between numbers of events. Finally, if the jumps within a sequence are
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made different heights and different durations from each other, now
infants compute numerical equivalence, just as Feigenson found for
parallel individuation models of objects that differed within a set. Infants
carry out two types of quantitative computations over event-file repre-
sentations—summing values of continuous variables and 1–1 corre-
spondence to compare number of jumps. In sum, Wood and Spelke
(2005a) have shown a system of parallel individuation of jumps with all of
the same signatures as the system of parallel individuation of objects.

Representations of Sets, Redux

The parallel individuation models depicted in Figure 4.9 consist of
symbols for individuals that may have properties bound to them and
that may be typed for kind. Still, no less than in the case of analog
magnitude representations, parallel individuation requires that a set of
individuals be selected as input. Further, as the cracker-choice studies
show, infants are able to index at least two sets in parallel, keeping track of
which consists of {cracker cracker} and which consists of {cracker cracker
cracker}. In the cracker-choice studies, the sets are individuated by
location. The infant must represent one set in one bucket and another in
the other bucket.

Recently, Lisa Feigenson and Justin Halberda (2007) have begun to
delimit the bases on which infants select sets for parallel individuation.
Remember the box-search task at which 12- to 14-month-old infants fail
to represent a set of four objects as more than one. Shown four objects
placed in a box into which they can reach but not see, infants of this
age are satisfied after having retrieved just one object. Feigenson and
Halberda have shown that 14-month-old infants can exceed their limit of
three objects in parallel individuation by chunking the objects shown
originally on top of the box into two sets. Shown a car, car, shoe, and
shoe lined up on top of the box before being placed inside it, infants now
search for all four, as they do if shown a car, shoe, car, and shoe. They fail
to search for more than one, of course, if shown a car, car, car, and car.
The Feigenson and Halberda data show that infants represent the
objects in the box as {car car} {shoe shoe}. The capacity to hold two sets
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in working memory in parallel allows infants to exceed their limits on
parallel individuation, just as representing two sets of crackers does in
the cracker-choice task. Apparently, sets can be selected on the basis of
location (as in the cracker-choice task; see also Feigenson & Halberda,
2004) or on the basis of property/kind information (as in the manual
search task). The infants’ working-memory representations must index
the distinct sets, binding the representation of the contents to each, so the
child knows which bucket to choose to maximize the total amount of
cracker and so the child knows that when she or he has retrieved a car and
a shoe, there are still two more objects in the box.

Finally, the experiments on parallel individuation reviewed above
reflect set representations in yet another way. In habituation studies,
infants are often never shown the same individuals twice. Thus, they
are not indexing particular individuals. By necessity, then, the repre-
sentations that support generalization or dishabituation capture only
that each array consisted of a set consisting of, for example, an object
and another object. In cases where the set-size signature of parallel
individuation is observed, the representations must at least implicitly
contain the information contained herein: {O O}. Infants abstract away
from the particular individuals shown—to differing degrees in different
contexts. Sometimes these object representations capture the average
value on some dimension over which the habituation objects varied,
and infants may then compare a model of a currently viewed set with
the memory model on the basis of total spatial extent. Sometimes
these object representations abstract away from the continuous
variables that characterize the individuals, and the memory model is
compared to a model of a currently indexed set on the basis of 1–1
correspondence.

In conclusion, infants’ capacity to create working models of more
than one set of individuals at a time, and their capacity to abstract away
from representations of particular individuals, creating memory models
that capture that what was in common in successive arrays was that each
consisted of sets of one, two, or three individuals, requires that infants
attend to, index, and represent sets. Parallel individuation, like analog
magnitude number representation, depends on representations of sets and
supports quantitative computations over sets.
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A Second Core Cognition System with Numerical Content

Although some describe this system of representation as a “small number
system,” that is a misleading name. The purpose of parallel individuation
is to create working-memory models of small sets of individuals, in order
to represent spatial, causal, and intentional relations among them. Unlike
analog magnitude number representations, the parallel individuation
system is not a dedicated number representation system. Far from it. The
symbols in the parallel individuation system explicitly represent indivi-
duals. Consider again the individual file representations of two boxes
depicted in Figure 4.8. There is no symbol that that has the content
“two”; rather, the symbols represent the boxes. The whole model {box
box} represents two boxes, of course, but only implicitly. Furthermore,
as we have seen, the quantitative calculations over parallel individuation
models in working memory often privilege continuous variables (such as
total event energy, total contour length, total surface area) over numerical
equivalence.

For these reasons, many researchers have taken the evidence that
parallel individuation underlies infant performance on “number”
experiments as undermining the claim that infants represent number.
This conclusion is wrong for several reasons. First, and foremost, that
infants sometimes fail to represent the number of individuals in small sets
does not detract from the evidence that they represent the number of
individuals in large sets. There is unequivocal evidence for infant analog
magnitude representations of number.

Another reason the conclusion is wrong is that parallel individuation
is shot through with numerical content, even though that numerical
content is merely implicit in the computations that pick out and index
small sets to represent, that govern the opening of new individual-files,
that update working-memory models of sets as individuals are added or
subtracted, and that compare sets on numerical criteria. The creation of a
new individual-file requires principles of individuation and numerical
identity; models must keep track of whether this object or jump, seen
now, is the same one as that object seen before, or this sound just heard,
is the same one as that just heard previously. The decision the system
makes dictates whether an additional individual-file is established, and
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this guarantees that a model of a set of three boxes will contain three box
symbols. Computations of numerical identity are (as their name says)
numerical computations. Also, the opening of a new individual-file in the
presence of other active files provides an implicit representation of the
process of adding one to an array of individuals. Finally, working-
memory models of two sets of individuals can be simultaneously main-
tained, and when individual-file models are compared on the basis of 1–1
correspondence, the computations over these symbols establish numer-
ical equivalence and numerical order.

Thus, although the numerical content in parallel individuation systems
is entirely implicit, it is sufficient to establish numerical equivalence and
numerical order among small sets. And, as we shall see in chapters 7 and 8,
this system of representation plays a crucial role in the creation of the
explicit verbal numeral list representation of the positive integers.

Conclusions: Relations Between Analog Magnitude Number
Representations and Parallel Individuation

That there are at least two distinct systems of core cognition with
numerical content raises several questions about the relations between
them. In what senses are they distinct? What determines when each is
deployed? Do they ever become integrated in a single system for
representing number? If so, when and how?

The analog magnitude number system and the system of parallel
individuation each take sets of individuals as input and create repre-
sentations that support quantitative computations. Still, the two differ in
many ways. Their qualitatively different processing signatures provide
evidence for radically different formats of representation, with mental
symbols with very different content. Two distinct processing signatures
were highlighted. First, the sensitivity of analog magnitude representa-
tions is limited by the ratio of the sets being discriminated, whereas the
capacity of parallel individuation is limited (in infants) to three indivi-
duals. Second, because object-file and event-file representations consist
of symbols for each individual, properties of those individuals (such as
the size of a particular object or the height of a particular jump) can be
bound to them and quantitative computations can be carried out over
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continuous variables as well as over discrete ones. These continuous
variables are highly salient in the infant parallel individuation system.
Analog magnitude representations of number, in contrast, abstract away
from properties of the individuals in the set, rendering those properties
unavailable for further computation. And indeed, the studies reviewed
above showed that infants create representations of the number of
individuals in large sets of objects, sounds, or events when continuous
variables are controlled, but that they largely fail to do so for small sets of
objects, sounds, or events when continuous variables are controlled for.
Third, the analog magnitude system creates summary symbols that rep-
resent approximate cardinal values of sets, whereas the parallel individ-
uation system does not. Infants’ capacity to sum over continuous variables
shows that they maintain representations of each individual in their
working-memory models of sets of objects or events.

Perhaps the most unexpected finding from these studies is that analog
magnitude representations and parallel individuation of small sets seem to
be mutually exclusive in infancy. Of course, it is in the nature of parallel
individuation models that they cannot represent large sets. But when
small sets are involved, infants seem not to deploy analog magnitude
representations, leading to striking failures. In all studies that reveal the
set-size signature of parallel individuation, such as comparing one to four
crackers, two to four crackers or three to six crackers, two to four jumps,
two to four sounds, or one to four balls seen placed into a box, infants
would succeed, if (1) they represented both sets with analog magnitudes,
or (2) they represented the larger set with analog magnitudes and could
compare across the two systems of representation. Rather, they seem to
fail to deploy analog magnitude representations at all, even though we
know they can do so for sets of four or six (as in 4 versus 8 or 6 versus 12
comparisons).

If analog magnitude representations are not defined for small sets in
infancy, then there would be a discontinuity between the infant system
and the adult system, contrary to one of the hypothesized properties
of core cognition. Sarah Cordes and colleagues (Cordes, Gelman, &
Gallistel, 2002) found that when estimation tasks are made very difficult,
scalar variability is constant from sets of 1 to 30, and Dehaene’s (1997)
study reviewed above found distance and magnitude effects comparing
sets of 1 and 4 (both within the limits of adult parallel individuation) to
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5 that were comparable to the comparisons of sets of 6 and 9 to 5 (all
outside the limits of adult parallel individuation). These data show that
for adults, analog magnitude number representations are computed for
small sets. Similarly, in Brannon and Terrace’s (1998) number-ordering
task, monkeys were trained to order small sets (one through four), all
within the limits of adult monkey parallel individuation. Nonetheless,
Brannon and Terrace found immediate generalization to large sets in
which numerical order was computed over analog magnitudes, and the
monkeys had no problems ordering pairs of sets one of which was in the
range of parallel individuation and one of which was outside it (e.g., three
versus seven). Thus, for human and monkey adults, representations of the
number of elements in small sets are seamlessly integrated with analog
magnitude representations of larger sets, and in some circumstances scalar
variability is observed in estimates of the cardinal values of sets from 1 to
30.

Fortunately for the core cognition hypothesis, at least two studies
show that infants can in some circumstances integrate numerical repre-
sentations across the boundary of small and large sets. For example, in
Brannon’s (2002) infant ordinal judgment tasks, one of the habituation
arrays was 1, 2, 4 and another was 2, 4, 8. Infants’ responses to these arrays
did not differ from 4, 8, 16. Also, the test array crossed the boundary: 3, 6,
12. More directly, Sara Cordes and Elizabeth Brannon (Cordes, Lutz, &
Brannon, 2007) recently showed that infants can discriminate sets of 2
from sets of 8 in the Xu and Spelke habituation paradigm, when all
continuous variables are controlled for. This differs from the failures of
discrimination of 2 versus 4 cited above.3 It seems possible that, in these
tasks, the analog magnitude system is primed by the presence of large sets,
leading the child to apply it to small sets. It is also possible that the
perceptual processes that create analog magnitude representations are not
well defined for small sets, so larger ratios (e.g., 4:1 instead of 3:2) are
needed for discrimination.

I conclude that analog magnitude representations are computable for
small sets by infants as well as by adults, but that in many situations infants
instead focus on the individuals. In these circumstance, attention to
individuals, and the creation of individual-files in working memory, may
simply take precedence over analog magnitude representations. It would
be nice to have an account of when infants will and when they will not
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compute analog magnitudes for small sets, but the argument of this
chapter does not require such an account. Which system is invoked by a
given situation is on the face of it rather unsystematic and context-
dependent. An account of exactly how one chooses to activate a given
representational capacity might be like the account of the exact forces on
a flipped coin—too unsystematic and detailed to be the object of any
science. We have no account, nor should we expect one, of how I
represent what’s on my cluttered desk as I write these words. I can focus
on the stacks of papers (approximately 20 of them, my analog magnitude
system tells me), or my cup and my cell phone (represented by parallel
individuation). What is important to the argument here is that there
clearly are two distinct systems, each with its own signatures and each
representing number in quite different ways.

In chapters 7 and 8, when I consider how children come to quantify
over sets using the conceptual resources that underlie natural language
quantifiers and how they learn the meanings of explicit numerals, I return
to the question of how and when children integrate the two systems of
core cognition. For now, please bear in mind that there is massive evi-
dence for two distinct core cognition systems with numerical content, in
one of which (parallel individuation) number is represented only
implicitly and in the other, number is represented by a mental magnitude
that is proportional to the cardinal value of the set of items under con-
sideration.

NOTES

1. Scalar variability of responses falls out of each of two competing models of
analog magnitude representations (magnitudes a linear function of number, standard
deviations proportional to the mean, or magnitudes a logarithmic function of
number, standard deviations constant). For the purposes of this book, choosing
between these two models does not matter.

2. See Antell and Keating, 1983; Starkey and Cooper, 1980. Of course,
researchers were aware of this potential confound, and attempted to control for it in
two ways. First, Starkey and Cooper contrasted 2 vs. 3 comparisons with 4 vs. 6
comparisons, finding that infants succeeded in the first and failed in the second. Since
4 vs. 6 differs in all continuous variables as does 2 vs. 3, they reasoned, it cannot be that
representations of some continuous variables underlie success. This control does show
that infants are not directly representing some continuous variable, such as
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total surface area, in memory, but it ultimately misses the mark because of the set-
size limits on object-file representations. Infants’ memory representations of the
arrays are subject to the limitation on parallel individuation of object-files, and
indeed, that infants succeed in comparisons of 2 vs. 3 in the face of failure at 4 vs. 6 is
the set-size signature of object-file representations. It is still possible within the limits
of parallel individuation that size may be bound to the object-file representations and
representations of the stimuli compared with respect to total area. Second, in some
studies (e.g., Starkey & Cooper, 1980; Strauss & Curtis, 1981), the stimuli varied in
area from habituation trial to habituation trial. However, since area variation was
random, the average total surface area of sets of two objects was less than that of sets of
three objects, and in the test trials, on average, the stimulus novel in number will be
more different from the average habituation value of total surface area than will be the
stimulus of the familiar number. What is needed is a design such as that achieved by
Xu and Spelke (2000).

3. I know of one study in which infants succeed in a three versus four habitu-
ation design (Wynn, Bloom, & Chiang, 2002). In one condition of this study infants
were habituated to three independently moving collections of four objects each.
They dishabituated upon being shown four collections of three objects each. As
neither the Weber-fraction limit of discrimination nor the set-size signature was
systematically probed, it is not clear what system of representation underlies perfor-
mance here, but clearly infants in this study surpassed the typically found limits of
representation of small sets. It would be of interest to probe what made this possible—
perhaps it was the fact that the individuals (collections in this case) were moving
independently of each other, in the manner of a MOT experiment.
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5
Core Cognition: Agency

Chapters 2 and 3 concerned core cognition of the physical world, the
world of distinct individual objects and physical constraints on their
motion and spatial relations. But the world of human infants is also social.
For us primates especially, predicting what others of our kind will do, and
influencing them to act in such a way that furthers our own interests, is
crucial for our survival. Selection pressures on understanding others so as
to be able to manipulate them (what has been called “the Machiavellian
mind”) may have been a driving force in the shaping of the human brain.
On this view, it would not be surprising that evolution bequeathed us
humans with core cognition of agents, agents’ interactions with each
other, and agents’ interactions with the physical world, articulated in
terms of representations of goals, information, and attentional states.

My review of the literature on infants’ representations of agents
closely parallels that of objects. First, I characterize the core domain,
detailing the concepts of agency that are at issue. I then sketch evidence
that infants represent the actions of agents as goal directed, and contrast
two different (and not mutually exclusive) proposals for the systems of
concepts that are deployed in these representations. I then consider the
competing empiricist hypothesis that the relevant innate representations
are perceptual, and that the infant learns concepts of agency through
some learning mechanism that operates over sensory and spatio-temporal
primitives. I then turn to a second aspect of agency—that agents are
capable of attending to and providing information about events and
things in the world, again sketching the evidence that infants represent
agents as such and countering leaner interpretations of the data I present. I
then examine whether core cognition of agency exemplifies other key
features of core cognition. Do the innate input analyzers that create
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representations of agency in infancy continue to operate throughout the
life span? Also, unlike core cognition of objects, which definitely extends
deep into our primate past, if not even further, how evolutionarily
ancient is core cognition of agency? I end with some questions unique to
this domain.. Is there more than one distinct system of core agency
representations, and if so, how are they related? And finally, I have a few
words to say about whether and in what ways the preschooler’s theory of
mind transcends core cognition of agency.

The Central Concepts in the Domain: Agency,
Goals, Information, and Attention

Causality in the domain of inert physical objects is contact causality.
Inanimate objects go into motion immediately upon and only upon
being contacted by another moving object, and change state only upon
being contacted by an object or by some source of physical energy.
Causality in the domain of agents has a different structure. Agents are
capable of self-generated motion and of resisting forces acting upon
them. This aspect of our concept of agency interacts with representations
of physical causality and is the topic of chapter 6. A second component of
causal attributions in the domain of agency concerns our explanations for
specific actions. We explain agents’ actions in terms of their goals and the
states of the world that facilitate or impede attaining these goals. We
monitor agents’ attentional focus, and expect (at least in the case of
people) agents to provide us useful information about the world.
Representations of goals and attentional states are aspects of intentional
attributions and are the concern of the present chapter.

On some analyses, intentionality is a relation between an agent and
the world that is characterized by aboutness; an agent’s intentional state is
about something in the world. On this analysis, having a goal is a para-
digmatic intentional state: the agent desires a state of affairs (that she get
the toy, eat the apple, and so on), and wanting or desiring is an inten-
tional relation between the agent and the world. Other relations between
agents and the world also display the relevant property of aboutness.
Agents attend to and perceive objects and events, and attending and
perceiving are other paradigmatic intentional relations. Agents also
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indicate objects in the world (through pointing, spoken language).
Referring is another paradigmatic intentional relation.

On other analyses of intentionality, intentional attributions necessarily
involve attributions of propositional attitudes to agents. We can see the
difference between the richer and leaner interpretations of intentional
agency by comparing how we think of light-seeking tropisms of plants and
cookie-seeking actions of children. Both are goal directed, but we attribute
to the child representations of their goals and beliefs about where cookies
are to be found (e.g., “she wants to eat a cookie” and “she believes cookies
are in the cupboard”), whereas we attribute neither to the plant. The full-
blown schema of intentional causality is clearly in place by age 3 (e.g.,
Bartsch & Wellman, 1995). The proposals for core cognition of intentional
agency stop short of attributing to infants explicit representations of
agents’ propositional attitudes (what they believe, what they want, what
they promise . . . ). Rather, the proposals for which I will argue credit the
infant with representations of agents, their goals, their attentional and
perceptual states, and their information providing activities. Sometimes
I use the term “intentional agency” to signal that I am attributing more
to the infant than representations of self-generated motion and action
(those aspects of agency related to physical causality), but I do not mean by
this that I am attributing representations of mental representations.

The debates reviewed in this chapter do not concern whether infants
are intentional agents. I have no doubt that they are, even in the strongest
sense. Infants form mental representations with symbolic content, and
their behavior is intentional, goal directed, and mediated by their repre-
sentations of the world. Rather, what is at issue is whether infants under-
stand intentional agency—whether the capacity to form representations
of themselves or others as intentional agents is part of core cognition.

Representations of Goal-Directed Action

Imagine the following scenario presented to you on a computer monitor
(see Figure 5.1). You are initially shown a stationary scene, depicted in
Figure 5.1a. The small ball goes into motion toward the gap in the screen,
and the large ball begins to follow it. The small ball goes through the gap,
which is too small for the large one to fit, and the large ball goes around,
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both balls then disappear out of sight at the edge of the screen (Figure
5.1b). How would you interpret this scene? If you represent it in
terms such as “follows,” “chases,” “tries to catch,” “flees,” “tries to
escape,” you are representing the large ball, the small ball, or both, as
agents. You are characterizing the goals of agents. It is also possible to
represent this scene entirely in terms of descriptions of the motions of each
ball—a purely spatio-temporal description of the paths each ball takes.
Indeed, Laura Wagner found that when adults describe this scene, their
language reflects both types of construals (although the agentive construals
are far more common). The question, though, is how infants construe
the scene.

Csibra and his colleagues (Csibra, Biro, Koos, & Gergely, 2003)
presented evidence that 6- to 12-month-old infants represent the large

A
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Figure 5.1. Schematic depiction of habituation trials in Csibra et al., 1999. Reprinted
from Csibra, G., Gergely, G., Koos, O., & Brockbank, M. (1999). Goal attribution
without agency cues: The perception of “pure reason” in infancy. Cognition, 72,
237–267, with permission from Elsevier. The small ball goes into motion,
passing through the small gap in the barrier, then going out of sight. The large ball
appears to follow it toward the gap, then goes around the barrier before passing
out of sight.
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ball as having the goal of catching the small ball. In one study, they
habituated 12-month-old infants to this event. Notice that no completion
of the event is depicted during habituation; the infants are not shown
what happens on the far side of the barrier. At issue was whether infants
would infer the goal of catching. After habituation, test trials revealed
what happened behind the screen. Two endings were revealed: “catch-
ing” trials versus “passing trials.” In catching trials, the small ball stopped
and the large ball came to rest, touching it. In passing trials, the small ball
stopped and the large ball passed on by, passing off the screen as before.
Infants dishabituated to the passing trials, and generalized habituation to
the catching trails. Infants apparently had inferred the goal of catching
from the chasing event.

Wagner and I (Wagner & Carey, 2005) replicated this study, adding
two controls. In our study, infants in the chasing condition were habituated
to an event as in Figure 5.1. After habituation, they also were shown two
outcomes of this event in alternation. One was identical to the catching
outcome of the Csibra study; in the other, the passing outcome, the large
ball passed by the small ball, but stopped visibly at the edge of the monitor.
Thus, the two outcomes were matched in terms of the number of balls
visible at the end of the event. Again, infants generalized habituation to the
catching outcome, and dishabituated to the passing outcome.

Wagner and I also wanted to ensure that the outcome with objects
separated in space was not intrinsically more interesting than the outcome
with the two objects next to each other, but rather that infants found it
anomalous given their interpretation of the motion of the large ball as
goal-directed. We included a condition in which the motion of the
big ball would not be seen as chasing; the small ball went into motion,
and the big ball then came in from off screen, bounced off the bottom,
and then went off in the same trajectory as in the chasing event.
After habituation, infants were shown the two outcomes. Now they did
not differentiate the two. These experiments show that 12-month-olds
infer an end state in accord with an inferred goal of the large ball’s
actions. In other studies, Csibra and his colleagues (Csibra, Gergely,
Koos, & Brockbank, 1999) have shown comparable findings with
6-month-olds.

Amanda Woodward (1998) and her colleagues have provided con-
vergent evidence that young infants represent actions as goal-directed. In
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a typical experiment, Woodward habituated 5-month-old infants to a
hand moving across a stage and grasping one of two objects that were on
opposite sides of the stage. After habituation, the positions of the two
objects were reversed, and one of two new events was shown. In one
(same goal, different path), the hand took a different path to grasp the
same object (a different path, because the original object is now in a
different place). In the other, the hand took the same path as before,
grasping a different object from before. Apparently, infants had repre-
sented the original action in terms of its goal, and their attention was
drawn when the hand apparently pursued a new goal.

Several control conditions rule out the possibility that infants are
merely representing the final spatial relation between the hand and one of
the objects, dishabituating when the hand is touching a new object. In
one control, the hand was replaced with a stick with a multifingered
sponge at the end as the actor during habituation. In this case infants
dishabituated only in the same goal/different path condition. Apparently,
they did not reason about the motion of the stick-like entity as goal-
directed. Even putting the hand in a gold sparkly glove disrupts the
representations of these events as goal-directed for 5-month-olds.
Woodward (1998) also showed that actions of human arms and hands are
not always analyzed as goal-directed. If the arm just flopped down, hand
backwards, through the same path as before, the hand ending in contact
with the target, infants reacted as in the stick/sponge condition. They
dishabituated only in the different path/same goal condition. In these
three conditions (gold glove, stick/sponge, flopping arm), the spatial
relation at the end of each habituation trial was the same as in the grasping
condition: the object in contact with the target object. But it is only
when the action can be interpreted by the child as goal-directed that the
child dishabituates when the target of the action (rather than the path of
the motion) changes.

Two Proposals for the System of Representations Underlying
Infant Attribution of Goals

The Csibra, Gergely and the Woodward experiments all suggest that
infants represent some actions as goal-directed by 5 or 6 months of age
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(see Sommerville, Woodward, & Needham, 2005, for evidence in
3-month-olds). Very young infants are capable of goal attributions. What
system of representation supports these attributions?

Proposal 1: The Teleological Stance

Csibra, Gergely, and their colleagues argue that the teleological (i.e.,
goal-directed) interpretation of such events has a three-part structure (see
Figure 5.2): a representation of the goal, a representation of the physical
constraints on the action needed to attain the goal, and a representation of
the means for achieving the goal, given the constraints. Furthermore,
they claim that infants’ representations of the actions chosen to achieve
a goal are constrained by a “principle of rationality,” to wit the most
direct, least effortful, action to attain the goal, given the current envi-
ronmental constraints, should be chosen.

The study described above (Figure 5.1 and surrounding discussion)
shows that infants represent the goals of actions. In a variant of this study,
Csibra and his colleagues (2003) probed whether 12-month-olds’ repre-
sentations are constrained by the principle of rationality, and whether they
analyze the constraints imposed by the environment. They habituated

Satisfying well-formedness criterion

(Principle of rational action)

Behaviour Means

End
State

Physical
Context Constraints Goal

Observed Action Interpreted Action

Figure 5.2. The three-part structure of the teleological stance, according to
Gergeley & Csibra. Infants analyze behavior relevant to end states and the physical
context of the behavior. If the behavior is consistent with being directed toward an
endstate, taking into account the constraints of the environment, and following the
most efficient path, it is analyzed as goal directed, satisfying the rationality constraint.
Gergely, G., & Csibra, G. (2006). Sylvia’s recipe: Human culture, imitation, and
pedagogy. In S. C. Levinson & N. J. Enfield (Eds.), Roots of human sociality: Culture,
cognition, and human interaction (pp. 229 to 255). Oxford, UK: Berg Publishers Ltd.
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infants to the same beginning events as in Figure 5.1. The test trials
were identical to the habituation trials except for one change: the gap in
the barrier was enlarged, so that now the large ball could pass through.
The two test events consisted of the large object following the small one
directly through the gap (a rational action, given the goal of catching)
versus the large object following the same trajectory as during habituation.
The latter outcome violates the rationality principle. Given that the infant
understood the action of the large ball in terms of the constraint imposed
by the small gap, and expects the large ball to take the shortest path in
pursuit of the small ball, then the event in which the ball continues to go
around the barrier is anomalous. Indeed, infants looked longer at the
irrational event. It appears, then, that infants’ representations of this event
include a specification of environmental constraints and a specification of
the relative efficiency of means to attain goals. Their attention is drawn if
the less rational means are chosen.

Further evidence for this conclusion is provided by a study that
shows that infants infer an environmental constraint given evidence for a
nondirect path of motion. Csibra and his colleagues (2003) habituated 12-
month-old infants to the event depicted in Figure 5.3. After habituation,
the screen was removed, revealing a scene in which there either was or
was not a barrier in the path toward the goal. The large ball’s motion was
the same as during habituation. Infants looked longer at the event in
which the ball jumped over a nonexistent barrier. Again, this experiment
shows that infants’ representations of goals, means, and environmental
constraints on actions are tightly intertwined and constrained by the
principle of rationality.

One final study from Gergely’s group shows just how subtle infants’
reasoning about rationality is. The study built on earlier work by Andy
Meltzoff (1988), showing that 14-month-old infants imitate the means an
agent adopts in attaining a goal, even when the means are not obviously
rational. Meltzoff demonstrated for the infants that touching a panel with
one’s head would make it light up. A week later the infants returned to
the laboratory, and they imitated the means—they make the panel light
up by touching it with their heads, even though that is not the easiest way
to make bodily contact with the panel. Gergely and his colleagues sug-
gested that the infants might be reasoning as follows: if touching the panel
with hands would work, the actor would have done so, this being the
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more natural, efficient, and thus more rational action; therefore, it must
be necessary to use one’s head.

Gergely (Gergely, Bekkering, & Kiraly, 2002) showed that infants
were engaged in such reasoning by including a condition in which the
actor’s hands were obviously engaged when he leaned down and touched
the panel with its head. The actor pretended to be cold, was given a
blanket, and was clutching the blanket around himself when touching
the panel with his head. This condition was compared to one exactly like

Obstacle

No-Obstacle

Habituation

A

B

C

Figure 5.3. Schematic depiction of the experiment from Csibra et al. (2003),
showing that infants infer an environmental constraint to make sense of an action that
apparently violates the rationality constraint. Infants were habituated to a ball rolling
along a path and then apparently jumping while the path is hidden behind a screen
(A). During test trials, the screen is removed, revealing an obstacle on the path (C) or
no obstacle on the path (B), and the motion of the ball is repeated. Reprinted from
Csibra, G., Biro, S., Koos, O., & Gergely, G. (2003). One-year-old infants use
teleological representations of actions productively. Cognitive Science, 27(1), 111–133,
reprinted by permission of Taylor & Francis Ltd, http://www.tandf.co.uk/journals.
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that of Meltzoff’s experiment, in which the actor’s hands remain on the
table, beside the panel, when the actor touched the panel with his head.
Infants in the latter condition replicated Meltzoff’s findings—they also
touched the panel with their heads. But those in the first condition, in
which the actor’s hands were otherwise engaged, touched the panels with
their hands and virtually never used their heads. This study shows that by
14 months of age, the rationality constraint is used not only to predict
what an actor will do but it also guides the child’s causal analysis if the
actor acts in an inexplicably irrational way.

Gergely’s and Csibra’s proposed schema for the intentional stance has
no privileged representation of the agent. The goal is not explicitly
predicated of an agent, nor is there any relation between an agent and a
desired state explicitly represented. Rather, it is the action itself that is
represented as goal-directed. And indeed, Gergely’s and Csibra’s very first
experiments on infants’ teleological reasoning suggested that information
about the potential agency of the figures played no role in the teleological
attribution. In these studies, a ball sailed over a barrier and then nestled
against another ball on the other side of that barrier. In one condition,
there were ample cues to agency for the geometric figures; they went
from rest to motion on their own, they expanded and contracted in
apparent response to one another, and they reacted contingently to the
barrier. In the other, the circle appeared from off screen already in
motion and simply sailed over the barrier, stopping next to the other
circle. In both cases, infants’ reasoning about the subsequent behavior
of the figures was guided by the principle of rationality, and equally so.
That is, they apparently saw the action as goal-directed, in spite of
no independent evidence in the second case that the actor was an
independent agent.

Proposal 2: The Goal-directed Agent

Of course, we do not know from these results that infants did not
attribute the goal to agents. Rationality, after all, is actually a property of
agents, and goals are something agents have. Proposal 2 differs from
Proposal 1 in that intentional states (goals, attention, perception, refer-
ring) are predicated of particular agents. Consider again the event in
which the ball comes flying from off screen already in motion. There are
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two cues to goal-directedness in this task. The large ball always ends up
nestled next to the small one (equifinality). Furthermore, the screen
heights vary over three values during habituation, and the large ball
always clears them (variable paths, tracking environmental constraints).
But this event is perfectly ambiguous concerning whose goal it is—it
could be the ball’s, or it could be some other agent’s, an agent who is
throwing the ball. If infants are indeed assigning goals to agents in these
circumstances, then they should be sensitive to cues that disambiguate
these two possibilities. In a series of studies that I will describe more fully
in Chapter 6, Rebecca Saxe and I have explored this possibility, and
found evidence that indeed infants are concerned with assigning agency
in such studies.

Saxe (Saxe, Tenenbaum, & Carey, 2005) habituated 10- and 12-
month-old infants to real-live versions of the habituation events
described above. Infants watched as a figure flew in from offstage over a
screen, landing on the other side of the stage. The screens were of
variable heights, so the infants had evidence for variable paths, and for
equifinality—the figure always landed on the other side of the stage,
having cleared the screen. For present purposes, the crucial manipulation
was a familiarization period before these habituation events occurred.
During this period, babies were acquainted with the nature of the flying
entity. For half of the babies, the flying entity was a regular bean bag, and
infants had seen it resting on the stage floor motionless for 20 seconds
during familiarization. For the other half of the babies, the flying entity
was a furry brown puppet with googly eyes and two floppy legs, and the
infants had seen it moving around on the stage for 20 seconds during
familiarization. Then the experiment unfolded as in the original Gergely
experiments. Infants were habituated to the object’s flying over three
screens of variable heights, always landing in the same place on the other
side of the stage. After habituation, a hand appeared, either from the side
of the stage from which the bean bag/puppet had appeared or from the
other side of the stage. When the flying figure was a dispositionally inert
bean bag, infants looked reliably longer at the test events in which the
hand appeared from the side different from that from which the bean bag
had appeared during habituation, suggesting that they had interpreted a
person or hand as the source of the bean bag’s goal-directed motion. In
contrast, when the flying entity was the puppet, they did not differentiate
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the two sides, but rather looked longer when a hand appears at either
location, suggesting that they interpreted the puppet itself as the source of
its own goal-directed motion. Thus, assuming that the equifinality and
environmental constraints were sufficient to create goal representations in
our version of the experiment, it appears that infants do assign goals to
particular agents, although they, like adults, can see an event as goal-
directed even when there is ambiguity as to the intentional agent (see
Saxe, Tzelnic, & Carey, 2007, for convergent data with 7-month-olds).

Three other lines of studies show that infants are assigning distinct
roles to distinct actors in these teleological events. Phillip Rochat and
colleagues (Rochat, Striano, & Morgan, 2004) showed showed that
infants as young as 3 months of age discriminate displays that consist of
one disk “chasing” another from motion of the two disks in which the
motion of one is independent of the motion of the other. Of course, this
shows only a sensitivity to contingency, not that the infant interprets the
events as consisting of one object’s chasing another. Adapting an
experimental logic first introduced by Alan Leslie (see chapter 6), Rochat
habituated 5-, 7- and 9-month-old infants to the chasing events, in which
the disks differed in color. For example, the chaser might be red and the
quarry blue. After habituation, the colors were reversed. After reversal,
the overall contingency and spatio-temporal relations between the fig-
ures was the same as before. Nine-month-olds, and 7-month-olds to a
lesser extent, dishabituated to the reversal, as if they had assigned different
roles to the chaser and to the quarry.

Supporting this conclusion, Anne Schlottman and Luca Surian
(1999) habituated 9-month-old infants to a “reaction event.” A green
rectangle inched toward a stationary red rectangle, with a motion similar
to that of a caterpillar. Before the green rectangle reached the red one,
and also before the green rectangle stopped moving, the red one inched
away. Adults see this display as the red one fleeing the green one, an
intentional attribution. However, if the green rectangle stops before
reaching the red one, and there is a pause before the red one goes off, the
event is not seen as one in which the red rectangle is fleeing the green
one. Thus, this “nonreaction” event provides a control for the reaction
event—if infants are responding to the spatio-temporal relations alone
(first the green one moves, then the red one moves), then a reversal of the
event should be equally interesting in both cases. Infants in the reaction
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event condition dishabituated when the roles were reversed (the green
one flees the red one), but those in the nonreaction event condition did
not (first the red one moves and then the green one moves). It seems,
then, that 9-month-olds represent the reaction events in terms of
intentional agency, assigning different intentions to the two actors. These
data provide convergent evidence for Rochat’s conclusion that the
7- and 9-month-olds in his role-reversal experiment are seeing chases in
terms of agency. They also provide convergent evidence that infants
assign goals to particular actors—if there were merely representing the
teleological structure in the reaction event (there’s chasing going on),
they would not dishabituate when the roles were reversed, because the
teleological structure of the overall event remains the same.

Finally, a recent series of studies by Valerie Kuhlmeier, Karen Wynn,
Paul Bloom, and their colleagues (Kuhlmeier, Wynn, & Bloom, under
review; Hamlin, Wynn, & Bloom, in press) show how rich infants’ repre-
sentations of agents can be. Infants represent second-order goals—whether
one agent’s goal is to help or hinder a second agent’s attaining its goal—and
they make differential attributions about the helper and the hinderer. In
these experiments, a geometric figure with eyes (e.g., a red half-circle) is
trying to get up a hill, as shown in Figure 5.4. It makes it to the first plateau,
and partly up the second hill, before falling back to the plateau. Then, on
half of the habituation trials, one of the other geometric figures with eyes
(e.g., a yellow triangle) comes down and gently pushes the figure up the
rest of the second hill. In these trials, the yellow figure is the helper. On the
other half of the habituation trials, the other figure (e.g., a blue square)
positions itself between the top of the hill and the figure, and gently pushes
it all the way down to the bottom. This blue square is the hinderer.

In a series of studies with this basic design, some involving animations
and some involving live action, infants as young as 6 months of age
distinguish the helper and the hinderer. Their attention is drawn in test
trials if the original figure approaches the hinderer in preference to the
helper; and if they are themselves given a choice to pick up or touch
either the yellow triangle or the blue square, they choose the helper, not
the hinderer. That is, they prefer the helper and they expect the figure
whose goal it was to reach the top of the hill to also prefer the helper.

I conclude that by 6 months of age, infants make rich attributions of
goals to agents. They represent goal-directed actions in terms of the
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teleological schema depicted in Figure 5.2. In addition, they assign goals
and even dispositions to particular actors, and their interpretations of
subsequent events are constrained by these dispositional attributions.

Conceptual Representations of Agency or a Leaner
Interpretation of the Data?

In some of the above experiments, the actors are geometric figures with no
bodily features of agents. In these cases, no evidence concerning the goal-
directedness of their actions is provided by the nature of the entities
themselves. These objects do not look like known agents; they are not
people or animals. Apparently, there is sufficient information in the spatio-
temporal properties of these events to support the teleological interpre-
tation. As input to their analysis of the scene, viewers have only the
trajectories of the objects, the spatial layout of the environment, and the

Triangle Helps Movie

Square Hinders Movie

(1) (2) (3)

(1) (2) (3)

Figure 5.4. Schematic depiction of habituation trials from Kuhlmeier et al. (under
review): a: the circle apparently attempts to climb the hill, not succeeding to make it
all the way up, b: on ‰ of the habituation trials, the triangle comes down behind the
circle and apparently helps it up the hill, and c: on ‰ of the trials the square positions
itself in the way of the circle and apparently pushes it down, causing it to go all the
way down to the bottom.
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contingencies between the objects’motions with respect to each other and
with respect to the environment. Just as spatio-temporal relations between
the movements of perceived surfaces are sufficient to cause the repre-
sentation of one or two numerically distinct 3-D objects (see chapters 2
and 3), a spatio-temporal analysis of such events as those shown in Figures
5.1, 5.3 and 5.4 supports attributions of goal-directed actions, and of
agents and their dispositions. Although spatio-temporal information is
sometimes sufficient input to the mechanism that computes teleological
descriptions of these events, representations of goals and means, agents,
helping, hindering, chasing, fleeing, and computations of rationality go
beyond the spatio-temporal description of the scene, and they cannot be
reduced to a spatio-temporal vocabulary. The motions could be charac-
terized entirely in spatio-temporal terms—in terms of the trajectories of
each figure relative to the others, and to those of each other. Nowhere in
these descriptions would we find concepts such as goal.

Thus, infants’ representations of agents are conceptual in just the same
sense as their object representations are. They cannot be expressed in terms
of spatio-temporal primitives, and as documented above, they have a rich
infererential role. Of course, the claim that infants’ representations are
conceptual depends on our being correct in attributing to them concepts
of goal, means, agent, chasing, helping, and so forth. It is always possible
that infants are merely representing regularities in the motions. Perhaps
infants have learned generalizations about motions: if an object repeatedly
follows a given path, it will do so in the future, unless there is a change in
the environment that permits a straighter path between the starting point
and the end point; objects cannot pass through gaps in barriers that are
smaller than they are; objects go around or over other objects (owing to
the solidity constraint). Could the infant’s looking-time patterns in these
experiments reflect violations of expectancies formulated directly in terms
of the paths of motions themselves? Call this the “lean” interpretation of
experimental results such as those reviewed above.

Perhaps the lean interpretation is correct, but I doubt it. How often
have infants seen objects jump over barriers much larger than the objects
themselves are? How often, really, have infants seen objects begin with
the trajectories as shown in Figure 5.1 and end with one object next to
the other? One problem with the lean interpretation, on which infants’
expectations reflect learned regularities of patterns of motion, is that one
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has to explain how the child focuses on just these regularities. If the
infant’s reasoning is guided by the three-part representation of goals,
actions, and environmental constraints depicted in Figure 5.2, and by the
distinction between agents and dispositionally inert objects, then this
problem becomes much more tractable.

Furthermore, evidence concerning interrelations among different
aspects of intentional attribution strongly suggests that infants represent
events in terms of agency. First, the inferential role sketched in the
previous section provides strong evidence for the rich interpretation.
Second, several of the studies reviewed above show that the features of
the actor do matter. Independent cues to intentional agency are inte-
grated from as early as we have evidence that infants are making inten-
tional attributions at all. Remember Woodward’s findings that the
motion of a figure across the stage and making contact with a given
object is interpreted as a goal-directed action only if the object is a
normally reaching and grasping hand. This shows that by 5 months of
age, infants have identified “grasping by a human hand” as a special case
of agentive action, and that they use this schema to supplement the
spatio-temporal and contingency information in these events (which is
identical across the grasping hand, flopping hand, stick/sponge, and
golden glove conditions).

Not only is information about an agent’s kind sometimes taken into
account as infants attribute goals to a behaving entity, but agent-specific
information is also considered as infants assess rationality. This was shown
by infants’ taking into account whether there was an explanation (the hands
were occupied) for why the person turned on the light with her head rather
than with her hands in the Gergely experiment described above.

In sum, several forms of evidence support the view that infants
represent goals as goals of particular agents. From as early as when infants
create representations of goals from patterns of motion and contingent
interaction, they notice if the roles of particular players within the sce-
nario shift, even if the patterns of motion and contingency remain
constant. Second, equally early in development, infants draw upon
cognition of particular kinds of agents as they build representations of
goal-directed action in three different ways: (1) in assigning agency to
the moving entity itself or to the source of that entity’s motion, (2) in
assigning goal directedness to an action at all, and (3) in interpreting what
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is rational. Some of these phenomena are observed at 5 to 7 months of
age—as young as these methods yield systematic results. That the
representations are sensitive to multiple sources of information outside of
the spatio-temporal features of the events supports the claims that the
representations of these events go beyond the vocabulary of the lean
interpretations—that is, go beyond the vocabulary of perceptual pri-
mitives.

Another type of integration within the domain of intentional agency
also supports the richer interpretation. In addition to representations of
agents’ goals, infants represent agents as indicating, communicating
about, and attending to objects. Insofar as representations of these aspects
of intentional agency are integrated with those of agents’ goal-directed
behavior, the rich interpretation of both types of representations is bol-
stered. But before considering evidence for the integration of the two
aspects of representations of intentional agency, I must make the case that
infants represent agents as referring to objects in the world.

Attention/Perception/Reference

Imagine the following scenario: you are engaged in intense conversation
with a person sitting across the table from you, and she mentions “the
book on the table.” Her language has content; it refers to something in
the world, and you take what she subsequently says to be about the book
you decide she is referring to. You are making a referential attribution, as
well as an attribution that she is providing information about the book.
Suddenly, the person disengages and turns and looks to the side. You
follow her gaze. Why? If you are seeking what she is looking at, you are
representing her attentional state, as well as representing hat she is looking
at and perhaps seeing something. That is, you interpret her look as having
content, as being directed at something in the outside world. Similarly,
she points and you follow her point. Why? If you are seeking what she is
pointing at, again you are assuming that she is referring to something and
perhaps about to provide information about it. When we represent others
as using language referentially, attending to something, pointing or
looking at something, we take these actions as being about something in
the world, and in this sense as intentional.
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There is decisive evidence that infants in their second year of life
(12 to 24 months of age) make this type of intentional attribution. As we
shall see, there is good evidence that infants in the first year of life do so as
well. Perhaps the clearest manifestation is the toddler’s understanding of
language as referential. “Cat” refers to cats, and there is much evidence that
toddlers know this. Dare Baldwin’s (1991) work on 15- to 18-month-olds’
interpretation of newly heard words provides one striking demonstration
that this is so. Baldwin presented toddlers with a novel object, an object
that they knew no name for. She waited until the child was looking at the
novel object, and then said “Look at the toopa,” using a novel word. The
experimenter, however, was looking into a bucket at that moment.
Baldwin assessed whether the child mapped the word to the object the
child was examining. Toddlers of both ages, 15 and 18months, looked up
at the experimenter’s eyes as soon as they heard the novel word, as if they
were checking what the experimenter might mean. And the older infants
established a mapping between the novel word, “toopa,” and the object in
the experimenter’s bucket, even though they had never seen that object
before and never saw it at the same time the word was spoken. These data
show that children at both ages assume word usage to be referential; one
must establish what a person is indicating in order to know what a newly
heard word means, and what that person is looking at when using the term
provides relevant information. The relation between words and entities in
the world is not merely one of associative pairing; the child does not make
an associative mapping between a novel object and a novel word heard
when the child is attending to that object. Another person’s word usage
and looking behavior must be integrated in order to establish what that
person is referring to.

Recently, Melissa Preissler and I (Preissler & Carey, 2004) provided
convergent evidence for Baldwin’s conclusion that by 18months, at least,
the mapping infants establish between words and objects is referential,
not associative, and we extended this conclusion to the relations between
pictures and objects. Preissler taught 18-month-old toddlers a new word,
“whisk,” by repeatedly pairing it with a picture of a whisk: “This is a
whisk. Can you show me the whisk, point to the whisk . . . ?” After the
child had learned to pick the picture of the whisk from among pictures of
familiar objects, and also from pictures of unfamiliar objects, the child was
given a choice between the picture of a whisk and a real whisk, and asked
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to “show me the whisk.” If the child had learned an associative pairing
between the word and the picture of the whisk, he would be expected to
choose the picture. The child might also pick the real whisk, generalizing
the association on the basis of perceptual similarity. However, if he knew
that words refer to objects, and also that pictures do, the child would
assume that the initial teaching concerned what “whisks” are—namely,
the object depicted in the picture. In this case the child would be
expected to pick the real whisk, although he might also sometimes pick
the picture because we do use language that way—calling a picture of a
whisk “a whisk,” not “a picture of a whisk.”

The toddlers’ responses fell into the second pattern. They always
(100% of the time) chose the real whisk, even though they had never seen
one before and had not heard it paired with the word “whisk.” They also
sometimes included the picture (40% of the time). Control trials showed
that it was not the salience of the real object that drove the responses;
given a picture of a whisk and a different novel object, and asked to
indicate the “whisk,” they invariably chose the pictured whisk. Exactly
the same pattern of responses was also observed in 24-month-olds.

These results will not surprise any parent, but their theoretical import
bears further discussion. When we show a toddler a picture of a zebra in a
book and call it a “zebra,” we assume that she knows that the word refers
to the real animal. Likewise, when we say, indicating the picture, “We
can see a zebra in the zoo,” we do not think that the child thinks we will
see a picture of a zebra in the zoo. Preissler’s data, along with Baldwin’s,
show that our assumptions are right. By 15 to 18 months of age, at least,
toddlers understand the intentionality behind language use: words and
pictures are analyzed as symbols. They refer to objects; they are not
merely associatively paired with objects.

Gaze-Following, Pointing, and Joint Attention

The phenomona of gaze-following, pointing and showing provide fur-
ther evidence concerning when infants represent agents as seeking
or providing information about the world. By 9 to 12 months of age,
children hold up objects for others to look at, checking back and forth
between the others’ eyes and the object they are apparently attempting to
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bring to their attention (see Tomasello, Carpenter, Call, Behne, & Moll,
2005, for a recent review of the literature on shared attention). Most
researchers agree that such behavior reflects an intentional attribution on
the part of the infant: the infant is attempting to get the other to attend to
an object and is monitoring success. This behavior presupposes that the
infant represents others’ as attending to objects. But what of younger
infants, those who merely follow the gaze or points of others but who do
not yet point to or hold up objects to indicate them?

We know that in normal face-to-face interaction, infants begin to
follow the gaze of others at around 6 months of age, and reliably do so
by 10 months or so. Point following begins a few months later. Bruce
Hood and his colleagues suggested that even younger infants might
have the competence to follow another’s gaze, but this competence might
be masked by very young infants’ poor control of their own attentional
resources. To turn to look where the communicative partner is looking
requires the infant to disengage attention from the partner. However,
infants below 6 months or so have great difficulty disengaging from an
attended object. To test the hypothesis that difficulty disengaging from an
attended object masks competence in following gaze, Hood (B. Hood,
Willen, & Driver, 1998) displayed a photograph of a face on a computer
monitor in front of an infant. The eyes were centered, as if the face were
looking at the infant, and it blinked for 1 second. The eyes then shifted to
the left or the right and held their position for 1 second, after which the whole
face disappeared (see Figure 5.5). At that point, an object appeared, to either
the left or the right side of the monitor. This sudden onset of a new object in
peripheral vision, with nothing attended to centrally, would of course draw
attention. The question was whether the shift in eye gaze of the face on the
monitor had led the infant to begin to shift attention even before the face
disappeared. If so, the reaction time to shift gaze to the peripheral object
would be faster and more reliable when it appeared on the same side as the
eyes gazed toward. This is what was observed, and the youngest infants in the
study were only 2 to 4 months old. Consistent with the hypothesis that
previous failures to observe gaze-following in infants this young reflect infants’
difficulty in disengaging attention, infants failed if the face stayed in place; they
often did not even shift their gaze to the new object when it appeared

Perhaps the response was just to a direction of movement—the eyes
shifted from center to left, and if the object appeared on the left, infants
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shifted their gaze to it more quickly than if the object appeared on the
right. To check that any congruent movement would not yield the same
pattern of results, Hood et al. ran a condition in which the initial view of
the face had a tongue protruding centrally, accompanied by opening and
closing of the mouth instead of blinking, and instead of an eye-gaze shift,
the tongue moved to the extreme right or left of the mouth before the
face disappeared from the monitor. There was no congruency effect in
this case. Thus, these experiments establish that by 2.5 months of age,
infants shift attention in the direction of another’s gaze.

Rich or Lean Interpretation of Infant Gaze-Following?

Although we may all agree that very young infants shift attention in the
direction of another’s gaze, we certainly will not agree on what this
behavior reveals about the mind of the young baby. When the child
follows another’s gaze or point, does the child make an agentive

1,000 ms cycle
of eye blink 
until trial start

1,000 ms 
deviated
gaze cue 
(incongruent)

Probe

Figure 5.5. Design of Hood et al. (1998). Reprinted from Hood, B., Willen, J. D.,
& Driver, J. (1998). Adults’ eyes trigger shifts of visual attention in human infants.
Psychological Science, 9(2), 131–134, with permission from Blackwell Publishers.

Core Cognition: Agency 177



attribution (namely, that the other is looking at or indicating something)?
This is the rich interpretation of gaze or point following behavior.
Alternatively, the behavior might merely be a conditioned response
(follow the gaze or follow the point and something interesting will be
found), or there may simply be an innate reflex to follow the gaze of
another—one that does not imply any understanding that the other
person is looking at or attending to something. Both of these lean
interpretations (that the behavior is a conditioned response or an innate
reflex) deny that gaze- or point-following behavior indicates that the
infant attributes information-seeking states or information-imparting
states or attentional states to the agent.

Hood’s demonstration of gaze-following at 2‰ to 3 months of age is
certainly consistent with the lean interpretation that this behavior is
merely an innate reflex. The learned conditioned response alternative
seems less likely, given the difficulty children at this age have in disen-
gaging attention, making it difficult for them to learn that if they follow a
gaze, something interesting will happen there. Notice that the hypoth-
esized sensori-motor reflex itself has some of the properties of core
cognition. It requires representations that identify eyes, such that a shift
in direction of the eyes may trigger the child’s shift in attention in the
same direction. Any innate reflex involves representations, and so the
content of those representations is an open scientific question. It seems
likely that these would include both eye and face. Indeed, we know that
even newborn infants have representations of faces; they preferentially
attend to faces over other stimuli of comparable complexity and they
imitate facial gestures of others, producing the same gesture themselves
(Johnson & Morton, 1991; Meltzoff & Moore, 1994, 1999). Thus, this
hypothesized “reflex” requires innate input analyzers and representations
with content that go beyond mere perceptual and spatio-temporal
vocabulary. But if the reflex hypothesis is correct, these representations
do not provide evidence for core cognition of agency. Certainly, with
respect to attribution of agency, a lean interpretation of this behavior
is plausible. I know of no other converging evidence that would lead
us to credit the 2-month-old infant with a representation that the other is
looking at or attending to something. In other words, the representations
that underlie the infant’s shift of attention may well have the content
“look there,” rather than “look for what the other is looking at.”
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But although the lean interpretation is plausible, a richer interpre-
tation is also possible, and several lines of evidence lead me to favor it. As
we shall see, the ability to interpret gaze referentially has a long evolu-
tionary history, and it has a dedicated neural substrate. Cells in the
monkey’s superior temporal sulcus respond selectively to direction of
perceived gaze, and lesions in the homologous area in human adults
disrupt their capacity to tell what others are looking at (Campbell et al.,
1990; Perrett et al., 1985, 1990). Of course, that the capacity to detect
direction of gaze has a dedicated neural substrate does not tell us what the
content of the representations it computes are, but as we will see below,
there is good evidence that monkeys and chimpanzees use eye gaze to
infer others’ attentional states.

Simon Baron-Cohen (1995) argues that the fact that people with
autism show a selective deficit at making intentional attributions from eye
gaze supports the existence of a specialized system of core cognition in
normally developing people. He has shown that people with autism
(even adults, in some circumstances) can tell you what direction eyes
are pointed, but they cannot tell you what the person is looking at,
what the person wants, or what the person is referring to with a label.
Normal 3-year-olds effortlessly make all of these intentional attributions
from eye gaze.

Whether or not we accept Baron-Cohen’s arguments that the
existence of selective deficits supports the existence of specialized rep-
resentational systems (see Karmiloff-Smith, 1998, for a counterargu-
ment), can we decide between the richer and the leaner interpretations of
infant gaze following on the basis of data from human infants? Two types
of considerations are relevant, just as in the case of object representations.
First, the more representations of eye gaze are integrated with other
reflections of representations of agency, the more likely the rich inter-
pretation becomes. Second, we must consider learnability. Once we
grant that infants of a certain age represent agency, if we think that
younger infants do not, and if we think that the capacity to do so is
learned, we must be able to specify, at least in principle, a learning process
that could do the trick.

Early in infancy, the representations that underlie gaze-following are
integrated with other representations of agency. Infants much younger
than those in Baldwin’s word-learning studies monitor others’ attentional
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focus in communicative situations. As mentioned above, by 9 months of
age, some infants try to get communicative partners to attend to objects
they are attending to, and they actively monitor that their partners are
looking at what the infant is indicating. This behavior goes beyond a
reflex (or conditioned response) to look in the direction of a shift of gaze,
and it suggests that the infant’s attempts at communication are guided by
an appreciation establishing that joint reference is necessary. By this age,
infants appreciate that looking at, or attention, has content.

Similar phenomena are observed in the communicative situation
called “social referencing.” By 9 months of age, infants look to com-
municative partners when placed in novel situations, such as a visual cliff
(an apparent drop-off in depth, visually, but a clear Plexiglas surface) or a
novel object. They monitor the partner’s expression. If the partner
exhibits fear or disgust, they do hold back; if the partner is happy and
encouraging, they explore the novel situation. Using the same logic as in
her word-learning studies cited above, Dare Baldwin and Lou Moses
(1994) showed that by 9 months of age, in social-referencing situations,
infants know that expressions of fear and disgust have content—one is
afraid of something or disgusted by something. They showed that infants
monitor where the mother is looking when she expresses fear or disgust.
If the infant is looking at a novel object when the mother expresses
disgust, the infant immediately looks to the mother’s eyes. If the mother
is looking elsewhere, the infant does not assume that the object he or she
was looking at when the mother said “Oh, yuk” in a tone dripping with
disgust is disgusting. Emotional terms have content; one is disgusted by
something, and where the eyes are pointed is relevant to establishing
what that something is.

Recent studies by Yuyan Luo and her colleagues provide evidence
that infants integrate representations of an agent’s attentional focus with
representations of that agent’s goals by 6-months of age. These important
studies begin with an observation that forces a slight reinterpretation of
phenomenon tapped in the Woodward reaching paradigm. Luo and
Baillargeon (2005; see also Song, Baillargeon, and Fisher, 2005) showed
that infants’ look longerwhen an agent approaches or reaches toward a new
goal object in Woodward’s paradigm only if both potential goal objects
were present during the familiarization/habituation trials. Apparently,
infants interpret those familiarization trials as providing evidence
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concerning an agent’s preference between two objects, rather than pro-
viding evidence merely that the agent has a goal to reach for a particular
object. This is actually quite rational. If you see me reach 9 times for an
apple when I have a choice between an apple and a banana, you would be
warranted in concluding I prefer the apple and might be surprised if on a
10th trial I reached for the banana. But if you see me reach for an apple 9
times when it is the only food present, you might have no prediction
about what I would want when given a choice between an apple and a
banana.

Luo asked whether infants understand that an agent can express a
preference between two objects only if he or she can perceive both of
them. In two studies (12-month-olds: Luo and Baillargeon, 2007;
6-month-olds: Luo and Johnson, in press) Lou found evidence that this
is so. In each of these studies infants watched as an agent reached
repeatedly and grasped one of two goal objects visible to the child on the
stage. However, if one these two objects was not visible to the agent
(because the agent had her back to it, or because it was blocked by a
barrier that prevented the agent, but not the infant, from seeing it), the
child reacted as in the one-object conditions described above. That is, the
child did not look longer when the agent now could see both objects
and reached for the one that they had not reach for during familiarization.

These experiments show that 6- to 12-month-olds understand what
John Flavell called “Level 1 perspective taking.” That is, infants appear to
understand that an agent can see an object only if there is a direct line of
sight between the agent’s eyes or face and the object in question.
Contrary to the lean interpretation of infants’ gaze following, these
studies establish that infants understand that attention/perception pro-
vides the agent with information about the world, and that the infor-
mation available to an agent is relevant to that agent’s preferences and
goals.

Finally, 9- to 18-month-old infants infer more than attentional
content and predictions about future goal seeking behavior from people’s
gaze and emotional expression. If an adult playing with an infant engages
in activities that are ambiguous with respect to the intentions, the infant
looks to the adult’s face. For example, if the infant is playing with an
object, the adult might cup her hand over the infant’s hands, preventing
motion. Is this a game, a tease, or is the adult communicating that there is
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something dangerous? Or if the infant is reaching for an object, the adult
may pull it away just as the infant is about to grasp it. Again, the adult’s
intentions are ambiguous. These interactions may be contrasted with
unambiguous activities, in which the adult merely offers and gives infants
interesting objects. In the cases of the ambiguous actions, but not the
unambiguous ones, even infants as young as 8 months look to the adult’s
faces, specifically his or her eyes. Infants are apparently trying to read the
adult’s intentions (is this a game or something else), not just the adult’s
attentional focus.

Thus, very shortly after infants have control of their own eye gaze
(i.e., can voluntarily control where they look), they seek information
from where others are looking to make intentional attributions. They
look to another’s gaze to establish what that other person was afraid of
or disgusted at, what that person can see, whether that other person is
attending to what the infants are showing them, and to glean some
information about that other person’s intentions in ambiguous situations.
By this age, representations of where others are looking have a much
richer inferential role than merely directing the infant’s attention in a
reflex manner.

Lean and Rich Interpretations of Gaze-Following—Entities
Without Eyes

Both of the lean interpretations of gaze-following (innate reflex, con-
ditioned response) assume that the input to the reflex or learned associ-
ation is a human face or eyes. But as we saw above, at least in the case of
goal attribution, infants and adults reason about the motions of geometric
figures, entities without faces or eyes, in terms of the goals of their
actions, the environmental constraints, and a principle of rationality. If
goal attribution and reasoning about perceptual and attentional states are
truly integrated, then infants should reason about the attentional states of
entities without eyes or faces as well, and the stimulus characteristics that
lead infants to attribute goals should also lead them to attribute attention.
What little work there is on the stimulus characteristics that elicit
representations of actions as goal-directed suggests that they involve
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contingency between the actors and the environment. Is the same
information used in the attribution of attentional states as well?

Susan Johnson, Virginia Slaughter, and I (1998; following earlier
work by Movellan & Watson, not published until 2002) asked whether
evidence of communicative contingency between a baby and a robot
would be sufficient for the infant to attribute that the robot was capable
of attending to objects in the world. In other words, would infants follow
a shift in the attention of a faceless or eyeless robot? If so, under what
circumstances? The experiment ran as follows: infants were seated on
their mothers’ laps facing a stuffed robot. The robot was asymmetrical
and initially “facing” to the side; it had a light on the top of its highest
part. An experimenter faced the robot, said “Hi,” upon which the robot
“answered” with a single tone. The experimenter then said, “How are
you?,” upon which the robot “answered” with a three-tone sequence.
The experimenter then waved, and the robot flashed the light in
response. The robot then turned 90 degrees, so that the same side that
had been facing the experimenter now faced the baby.

A 1-minute period ensued such that any vocalization the infant made
was answered by the robot, and any hand or foot motion of the baby was
answered by a light flash. This was a low-tech robot—hidden experi-
menters watching the baby controlled the sounds and light flashes. After
this minute, the robot “turned” 45 degrees to the left or to the right,
“looking at” objects on the wall to the left or the right of the baby. The
dependent measure was whether the baby followed the robot’s “atten-
tion.” (Remember, there is no gaze to follow here; the robots lacked
faces or eyes.) The answer was yes, and just as much as in a comparison
condition in which infants were interacting with a communicative
partner who was a human being.

Data from a control condition established that the infants were not
simply following the turning of the robot. A second condition was a
yoked control to the first; the babies saw the same introductory events.
After the robot turned to face the baby, the robot’s actions (sounds made
and light flashing) were not contingent on the vocalizations or arm/leg
motions of that baby, but were rather those that had been contingent on
the actions of the previous baby. Thus, infants in the yoked control group
saw a behaving robot, indeed, exactly as much behavior as the experi-
mental group they were yoked to. However, when the robot turned 45
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degrees, the infants in the yoked control group did not turn to follow its
“gaze.” The robot must respond contingently to the baby for the infant to
represent the turning of the robot to reflect a shift in the robot’s attention
or the robot’s attempt to draw the child’s attention to something new.

Two other conditions established that the presence of a face is also
sufficient to elicit gaze-following. In these conditions, the robot had a face
on the front of the highest protuberance. The light on the top of the head
was removed, and now the eyes flashed in response to hand or legmotions.
Not surprisingly, the infants in the contingent reaction group turned to
follow the gaze of the robot. Indeed, the degree of gaze-following was
identical whether the entity was a person, a contingently responding robot
with a face, or a contingently responding robot with no face. Importantly,
in this condition, the infants in the yoked control group also followed the
gaze of the robot—a noncontingently responding entity that made sounds,
had flashing eyes, and had a face. Again, the degree of gaze-following was
identical to the other three conditions. Apparently, agents capable of
attentional states may be identified in two different ways: by analyzing their
behavior and from the presence of a face and eyes. These two cues to
agency are not additive—the degree of gaze following to a contingently
responding robot with a face or to a contingently responding person with a
face was no greater than to a contingently responding robot without a face,
or a behaving, but noncontingently responding, robot with a face. The
failure of the infants to follow the gaze of the faceless robot whose behavior
had not been contigent on the baby’s behavior tells us that under these
conditions at least, contingency is important for the attribution of the
referential/attentional aspects of agency. This robot behaved, and even
moved on its own; it turned on its own. Even the experimenter’s brief
modeling of communicating with the robot was not sufficient.

These data support the richer interpretation of gaze-following for two
reasons. First, neither lean interpretation (learned association between gaze
shift and something interesting in the direction of the gaze, reflexive
following of gaze shift) can explain the gaze-following of the faceless or
eyeless contingently responding robot. Second, this experiment provides
further evidence that by 12 months of age, infants have integrated two
different aspects of agency representations; those agents who can respond
contingently to the environment are those that attend to it. Inferential
integration of different aspects of agency lends support to the rich
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interpretation of experiments that establish infants’ representations of each
aspect independently.

Integrated Representatiions of Agents—Goals and
Attentional States

As mentioned above, evidence that gaze-following is integrated with
representations of an agent’s goals provides the basis for a richer inter-
pretation of both the phenomenon of gaze-following and the phe-
nomena that suggest infants make a teleological construal of events. Susan
Johnson and her colleagues (Johnson, Shimizu, & Ok, 2007; Shimizu &
Johnson, 2004) have extended the gaze-following robot results to a robot
even less animal looking than the brown furry one in the above studies—
a blue cylindrical plastic object. She finds that if that this object interacts
contingently with the child or the child sees it interact contingently with
an experimenter, it elicits gaze-following by the child. She also finds that
the baby’s seeing this object interacting contingently with an experi-
menter increases the probability of teleological attributions to it when the
child sees it subsequently move repeatedly toward a novel goal. Again,
representations of attentional states and of goal-directed motion are
integrated by infants of this age, supporting the rich interpretation of
each.

Melinda Carpenter and her colleagues (Carpenter, Nagell, &
Tomasello, 1998) carried out an extensive longitudinal study of 24 infants
between the ages of 9 and 15 months to explore the degree to which
different aspects of agent representations emerge together. They found
that the emergence of joint attentional engagement, gaze- and point-
following, imperative and declarative gestures, and imitation of novel
actions on objects were positively correlated, whereas these measures
were uncorrelated with performance on tasks of object permanence or
spatial reasoning. They concluded that representations of actions in terms
of goals (necessary for imitation) and of attentional and information
providing actions are two instances of the same underlying phenomenon
—namely, the representation of intentional agency.

Of course, as many have noted, it is always possible to offer a lean
interpretation of all these results. As Povinelli (Povinelli & Eddy, 1996)
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has argued in the case of chimpanzees, perhaps that child has merely
learned very complex rules for predicting others’ behaviors—rules like:
(1) if an entity responds contingently to another, and the side facing me
turns away, that side is likely to be facing something interesting; or (2) if
an entity responds contingently to another, and then subsequently moves
repeatedly to a particular object, it is more likely to continue to move to
that object than if it hasn’t been observed responding contingently to
another entity; or (3) if there is no object between an entity’s face and
two objects, and if an entity repeatedly moves toward one of these two
objects, the entity is likely to continue to move toward that one. But
what would support learning just these rules? Purely inductive statistical
learning over perceptual primitives is wildly unconstrained. Core cog-
nition of agency provides the needed constraints. In my view, the more
parsimonious interpretation is that contingent response triggers the
attribution of agency, including the capacity for attention to external
entities (the child himself, the object of the gaze), and it is these repre-
sentations that are the input to statistical learning mechanisms.

The Input Analyzers?

To reiterate the argument so far, representing events in terms of attentional
states, referential states and goal-directedness is part of core cognition of
agents. Agent representations are conceptual in the sense of requiring
representations not expressible in spatio-temporal vocabulary, as well in the
sense of having a rich inferential role, not only drawing together different
aspects of agent representations but also integrating agent representations
with causal reasoning about inanimate objects (see chapter 6). The most
important hurdle for a candidate core domain has been cleared: evidence
for a system of representation with conceptual content early in infancy.
I now comment on other features of core cognition in this domain.

The claim that agency is a core domain requires that there be innate
input analyzers that identify the entities in it. How do infants recognize
some entities as agents and some behaviors as goal directed or referential?
Elizabeth Spelke and I (Carey & Spelke, 1994) considered two alter-
natives concerning the nature of the hypothesized input analyzers:
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Possibility 1: Innate face recognizers enable the infant to categorize
entities as people, and people are innately recognized as agents.
Possibility 2: Agents are identified through analyses of their actions. Con-
tingent reaction to the child or to the environment, self-generated motion,
and so on are sufficient for attributions of attentional states and goals.

Notice that on the second possibility, the way infants may come to
recognize people as intentional agents is by analyzing their actions.

Spelke and I argued for the second possibility, on the basis of
experiments that show that infants see faceless continently reacting bags
of cloth and geometric figures on computer screens as agents. But Hood’s
gaze-following results with 2- to 4-month-olds pose problems for this
position. It is possible that infants this young have analyzed the actions of
human beings, and have learned that they are agents, what their fronts are
from analyses of goal-directed actions, and that eyes are especially
informative about attended entities. I think it more likely that the gaze-
following mechanism involves a separate innate input analyzer.

I now believe that there is no reason we must choose between pos-
sibilities 1 and 2, for both could be true. Agent detection is likely to be a
problem of such significance for humans that evolution has built more
than one redundant mechanism to contribute to its solution. The situation
may be parallel to the imprinting story for chicks. Conspecific/mother
identification is so important a problem for the survival of geese and
chickens that evolution endowed newborn chicks with two different
innate input analyzers dedicated to the problem, one that identifies things
that look like birds and one that identifies things that move in a certain
way (Johnson, Bolhuis, & Horn, 1985; Lorenz, 1937; see also chapter 1).
Similarly, it certainly possible that evolution built specific mechanisms for
face and eye detection, including specific computations relevant to
representations of agency, and also built mechanisms that identify agentive
behavior from patterns of motion and interaction among potential agents
and the world. Call the latter the agency-from-action input analyzer.

Infants certainly compute agency from action, as they do so when
analyzing the actions of moving geometric figures and nonanimal puppets
and robots. But as we saw above, Woodward showed that the identity of
the moving entity repeatedly ending in contact with a potential goal
(a hand versus a stick with finger-looking sponge appendages) influences
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whether 5-month-old infants attribute goals to the entity. Subsequent
work showed that infants at this young age can attribute goals to such
nonhand objects, so long as the spatio-temporal evidence for equipo-
tentiality and multiple paths to the goal is stronger (Gergely & Csibra,
2002). Still, Woodward’s demonstration that identifying the moving
figure as a hand helps disambiguate an action at 5months of age holds. It is
possible that analysis of contingency is at the root of all goal attribution,
including attribution of the goal of reaching, and infants have merely had
massive experience with the contingency between grasping human hands
and the objects they pick up. That is, the intentionality-from-action input
analyzer may underlie learning about hands as potential agents of goals.
But is also likely that evolution built in representations of grasping as goal-
directed; after all, reaching for objects is probably the first systematic goal-
directed activity the child has control over, and thus both reaching and
visual recognition of acts of reaching may have innate support.

An Aside: The Like-Me Hypothesis

One of my favorite results from developmental cognitive science is
Meltzoff and Moore’s (1994, 1999) demonstrations that young infants
imitate the facial gestures of people they are interacting with. Open your
mouth wide, and your newborn will do the same. Ditto for sticking
out your tongue (see Myowa-Yamakoshi, Tomonaga, Tanaka, & Mat-
suzawa, 2004, for comparable findings with a newborn chimp). These
demonstrations converge with other evidence for innate input analyzers
that represent human faces. More important here, they show also that
infants innately recognize the intermodal correspondence between what
some other person’s face looks like and their own facial gestures. Building
on these and similar observations, Meltzoff has suggested that infants may
come to represent other agent’s actions as intentional on the basis of an
understanding of their own intentional agency, plus the capacity to
recognize others as “like me.”

The demonstrations that categorization of an actor as a person (or
part of a person) increase the likelihood of intentional attributions are
consistent with this hypothesis. One of these was mentioned above:
Woodward’s finding that equifinal motions of hands were treated as goal-
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directed, whereas equifinal motions of sticks with sponges on the end
were not. Indeed, other research by Woodward has shown that infants
understand the intentionality in pointing only after they themselves have
begun to point. And a recent study by Jessica Somerville, Amanda
Woodward, and Amy Needham (2005) provides further evidence that
there definitely is something in the Like-Me hypothesis. These authors
gave 3-month-old infants experience with a mitten covered in Velcro,
such that the infant could pick up fuzzy objects simply by contacting
them. Infants quickly learned to use the sticky mitten. After this expe-
rience, infants were run in the traditional Woodward paradigm—an adult
wearing an identical mitten repeatedly contacted a given object in a given
location (one of two objects present in the scene). On test trials, the
locations of the objects were switched, and the adult either reached to the
old location/new object or the new location/old object. Only infants
who had themselves experienced the sticky mitten looked longer when
the adult reached for the new object. This result is important for several
reasons. First, it pushes the representation of goal-directed behavior
down to the youngest age yet—3 months. Second, it shows that in this
situation (involving reaching), only if the infant herself has carried out the
relevant goal-directed activity does she represent another’s action as goal-
directed. Note that this is not in general the case—in Gergely and Csi-
bra’s experiments described above geometric figures carry out actions that
the infant cannot yet do (and in some case will never do).

The Like-Me hypothesis seems likely to be true. Infants’ repre-
sentations of themselves as agents does help them analyze others’ actions
as goal directed, when these actions are seen as relevantly similar to goal-
directed actions in the infants’ repertoire. However, it is important to
realize that the Like-Me hypothesis is not an account of where the
capacity for representations of agency comes from, for two clear reasons.
Most important, babies can use their own agency to understand others’
only if they represent themselves as agents. Infants not only must be
intentional agents (which surely they are), but they must represent
themselves so. If they can do that, they already have representations with
contents like goal, looking at, agent, and so forth. Second, the Like-Me
hypothesis is underspecified. It leaves entirely open what features of
similarity to the baby support the identification. The experiments sket-
ched above suggest the person-recognition input analyzers play an
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important role (the agent must look like a hand or have the features of a
face), but we have also seen that infants can use patterns of motion alone
as a basis for intentional attributions. Thus, the Like-Me hypothesis,
although probably right, does not solve either of the outstanding
questions at issue in the present discussion: the origin of agency repre-
sentations or the nature of the input analyzers that identity agents, their
goals, their attentional focus, and their referential intent. It does add
another important piece to the story—evidence that the child indeed
does represent its own actions as goal directed and can use representations
of its own actions in making attributions of agency to others.

Constant Through the Life Span?

One of the earmarks of core cognition is that the innate input analyzers
operate throughout the life span. And indeed, adults make intentional
attributions on the basis of monitoring both eye-gaze and patterns of
contingency among actors. Obviously, adults follow eye-gaze and
understand a shift of gaze to reflect a shift of attention. Not so obviously,
adults also compute intentionality from patterns of motion alone. Heider
and Simmel’s (1944) classic studies, in which adults described interacting
geometric figures in language rich with intentional attributions, show
this. Heider and Simmel created a rich animated clip in which geometric
figures moving on a screen are seen to chase each other, escape, hide, try
to break down barriers, and so on. Here’s a sample description:

A man has planned to meet a girl and the girl comes along with
another man. The first man tells the second to go; the second tells
the first, and he shakes his head. Then the two men have a fight, and
the girl starts to go into the room to get out of the way and hesitates
and finally goes in. She apparently does not want to be with the first
man. The first man follows her into the room after having left the
second in a rather weakened condition leaning on the wall outside
the room. The girl gets worried and races from one corner to the
other in the far part of the room. Man number one, after being
rather silent for a while, makes several approaches at her; but she gets
to the corner across from the door, just as man number two is trying
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to open it. He evidently got banged around and is still weak from his
efforts to open the door. The girl gets out of the room in a sudden
dash just as man number two gets the door open. The two chase
around the outside of the room together, followed by man number
one. But they finally elude him and get away. The first man goes
back and tries to open his door, but he is so blinded by rage and
frustration that he cannot open it. So he butts it open and in a really
mad dash around the room he breaks in first one wall and then
another. (pp. 246–247)

And the exception that proves the rule—one adult in Heider and
Simmel’s original sample of 34 described the movies thus:

A large solid triangle is shown entering a rectangle. It enters and
comes out of this rectangle, and each time the corner and one-half
of the sides of the rectangle form an opening. Then another, smaller
triangle and a circle appear on the scene. The circle enters the
rectangle while the larger triangle is within. The two move about in
circular motion and then the circle goes out of the opening and joins
the smaller triangle, which has been moving around outside the
rectangle. Then the smaller triangle and the circle move about
together and when the larger triangle comes out of the rectangle and
approaches them, they move rapidly in a circle around the rectangle
and disappear. The larger triangle, now alone, moves about the
opening of the rectangle and finally goes through the opening to the
inside. He [sic] moves rapidly within, and finding no opening,
breaks through the sides and disappears. (p. 246)

Many subsequent studies have confirmed the finding that adults
attribute intentionality to displays of moving geometric figures, and
researchers have begun to explore the psychophysical bases of these
judgments (e.g., Gelman, Durgin, & Kaufman, 1995). Although the
actual movies presented to infants in the studies described above have not
been systematically studied, I have seen these movies and there is no
doubt that this adult automatically sees the actions displayed there in
terms of intentional agency. Wagner and I had naïve adults describe the
movies depicted in Figure 5.1. Their descriptions used intentional lan-
guage and/or personified the balls in 75% of their descriptions of events in
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which infants inferred a goal (Figure 5.1), as opposed to only 13% of the
movies in which the infants did not infer a goal.

Susan Johnson (2003) pursued the question of continuity much more
systematically. She showed adults videotapes of an experimenter inter-
acting with the robot (with or without eyes, responding contingently or
not), after which the robot turned. The adult was simply why the robot
turned. The language used to describe the robot was shot through with
intentionality in exactly the same three conditions that babies followed
the robot’s gaze; in the condition in which the babies did not follow the
gaze (faceless, noncontingent behavior), adults used almost no intentional
language. For example, in explaining the turning of the faceless con-
tingent robot: “Maybe it was looking for someone and tried to figure out
where it was,” and description of the faceless, noncontingently beeping
and flashing, robot: “The thing turned due to a program. It was pro-
grammed according to the sounds. After so many, the thing rotated.”

Thus, it appears that the input module that derives representations of
agency from action continues to operate throughout the life span. The
representational systems that accomplish these feats display common
psychophysical and processing signatures in infancy and in adulthood.
Core cognition of agency is continuous over development in the same
sense as is core cognition of objects (chapter 3) and number (chapter 4).
Recently, Henry Wellman and his colleagues have tested a strong pre-
diction of the continuity thesis (Wellman, Phillips, Dunply-Lelii, &
LaLonde, 2004; Wellman, Lopez-Duran, LaBounty, & Hamilton, 2007).
Systems of core cognition are learning mechanisms. Later developing
representations of agents are built from those in core cognition. If this is
true, then individual differences in the robustness or elaboration of agent
representations in infancy might be reflected in individual differences in
the course of later developments in theory of mind. In two different
studies, Wellman and his colleagues found just that.

Phillips, Wellman and Spelke (2002) had studied the integration of
infants’ representations of agents’ focus of attention with their repre-
sentations of agents goals. They found that at 14 months of age, infants
looked longer when an agent looked at and expressed positive emotion
toward one of two objects, and then reached for and picked up the other
of the two (as opposed to picking up the object that was the focus of the
attention and positive emotion). The Phillips study used a lengthy
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familiarization procedure, in which infants saw an agent repeatedly express
positive emotion toward and pick up one of the objects; in a Woodward
type design, the test trials involved a switch of the two objects, such that
the surprising outcome involved picking up the object that had been
picked up during familiarization. The authors noted that infants differed in
their degree of habituation during the familiarization period. Some barely
decreased looking at all whereas others quickly became bored. Wellman
and his colleagues brought the children who had been in the infant studies
back to the lab several years later. In two different studies (Wellman et al.,
2004, in press), individual differences among infants in the decrement of
attention to these events during habituation predicted performance on a
preschool theory of mind battery at age 4.

But wait—we know that speed of encoding during infancy predicts
later IQ (Bornstein & Sigman, 1986; Fagan & McGrath, 1981), and IQ is
highly correlated with measures of individual differences in executive
function. We wouldn’t be surprised to learn that children with higher
IQs achieve the preschool theory of mind milestones earlier than do
children with lower IQs. But Wellman showed that the prediction of
individual differences in the preschool theory of mind tasks was undi-
minished if he controlled variance in IQ or executive function.

In sum, core cognition of agency is continuous throughout devel-
opment in two related senses. The input analyzers that compute agency
from patterns of interaction among entities continue operate throughout
life, and the representations of agents that are the output of these ana-
lyzers are one source of later developing conceptions of agents.

Why So Late? Are Representations of Agency the
Output of Innate Input Analyzers?

Although some of the phenomena described in this chapter are observed
in infants under 6months of age (Hood’s gaze-following phenomena and
Woodward’s goal-directed reaching phenomena), most are not robust
until 6 to 9 months of age or later. Should such late emergence raise
doubts concerning core cognition in this domain? Does it undermine the
hypothesis that the representations in this domain are the output of innate
input analyzers? As we have seen in the case of core object cognition, the
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core cognition hypothesis is consistent with late emergence of behaviors
that reflect it. First, in some cases performance factors unrelated to the
representations articulating core cognition interfere with the behaviors
that might reveal it. Examples we have considered include frontal lobe
immaturity masking competence in tasks reflecting representations of
spatio-temporally continuous objects (chapter 2) and immaturity in
control of attentional resources masking competence in gaze-following.
Second, in other cases, the neural substrate of the innate input analyzers
or domain-specific learning mechanisms may itself mature relatively late.
Late emergence may have a maturational explanation rather than a
learning explanation. I do not know whether such maturational factors
play a role in this case, but there are reasons to think they may. Available
evidence supports frontal lobe involvement in the representations of
other minds, and the frontal lobes are late maturing (Diamond &
Goldman-Rakic, 1989). Finally, the core cognition hypothesis is not
incompatible with learning. Quite the contrary, core cognition systems
are domain-specific learning devices (remember the indigo buntings).
Even assuming core cognition of agency, learning dependent upon
innate conceptual representations would certainly be implicated in the
current case. Infants must learn what agents look like in order to form
categories of kinds of intentional agents. Infants must analyze patterns of
contingency in order to learn about particular goals or particular envi-
ronmental constraints. And it is possible that cognition in this domain is
supported by partially distinct systems of core cognition (e.g., the eye-gaze
computation device, the agency-from-action input analyzer) and that
learning is required to integrate them.

Indeed, there is only one learning account that is inconsistent with
core cognition of intentionality, and that is the empiricist position that
the innate representations in this domain are perceptual or sensori-motor.
On the empiricist view, the capacities to represent agents, goals, and
attentional states emerge as the result of some learning mechanism that
takes perceptual or sensori-motor representations as input and
yields representations with such content as output. Many psychologists
hold a version of the view. For example, consider Jean Mandler’s (1992,
2004) account of the origin of the concept animal (see also Rakison &
Poulin-Dubois, 2001, for a closely related proposal). Mandler maintains
that the concept animal has a conceptual core (self-moving agent), and
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that the capacity to represent this conceptual core is learned. The
problem, then, is how it is learned. Mandler posits, and I obviously agree,
that infants are sensitive to properties of motion—paths, self generation,
contingency. These can be cashed out in spatio-temporal terms. But the
question is how representations of agency might be learned, even given
sensitivity to such parameters of motion. The question, which should
now be familiar, is how learning generalizations stated in sensori-motor
vocabulary could ever lead to a representation with the content goal or
agent or attention.

Here is how Mandler thinks about this problem. She is concerned
with the transition between perceptual representations and conceptual
ones, and she thinks of the distinction as one of processing. Conceptual
representations support memory and action, and they serve as the core of
kind representations. She suggests that the infant produces conceptual
categories from perceptual input through a process of active, attentive,
perceptual analysis. Visual information is redescribed into a simpler and
explicitly realized form, most likely in the format of an image schema, but
perhaps in a more abstract format. The content of these explicit repre-
sentations includes the paths objects take, plus various relations among
objects such as containment, support, contact, and contingent relations. So
far, these contents are still statable in a sensori-motor vocabulary.
These redescribed representations are conceptual in the sense of being
explicit and accessible—an image schema constitutes a symbol in memory
that supports recall, computations in working memory, and so on.

I find these suggestions plausible. But the question that concerns me
is the origin of representations that are conceptual in a different sense—in
the sense of having content that goes beyond spatio-temporal vocabulary.
There is no known way that perceptual analysis alone could do the trick
of transforming representations of spatiotemporal properties into repre-
sentations of intentional agency. Abstracted image schemas of paths,
contingent interactions, and so on still represent paths, contingent
interactions, and so on. I agree with Mandler that the format of repre-
sentations of intentional agency is likely to be iconic, just as for other core
cognition systems (see chapter 4). But the question is where image
schemas with the representational content of the domain of agency come
from. How does an image schema come to represent attentional states,
goals, and agents rather than self-generated motions, movement from
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A to B, simultaneity? If one cannot define agency in spatio-temporal
vocabulary (even though spatio-temporal representations provide suffi-
cient input to perceptual analyzers that output representations of agents,
their goals, and their attentional states), then the problem of how these
concepts arise has not been solved.

In addition to these bare learnability considerations, this chapter has
developed many other arguments against the empiricist learning account.
In some cases the age of the infants, along with considerations of lim-
itations on the inputs they could possibly have experienced, casts doubt
on some plausible learning accounts. To repeat, that 2-month-olds shift
attention in response to shifts in another’s gaze is very unlikely to be the
result of a learned generalization: look in the direction those black circles
inside white circles shift direction toward, because something interesting
will be found there. Children so young cannot easily disengage attention
from an attended face, so they are unlikely to have the experience that
would be the input to learning this generalization. Similarly, but more
weakly, doubts were raised about the possibility that infants learn about
chasing and approaching events involving jumping over huge barriers or
squeezing between gaps in barriers by observation, simply because they
probably never see such events. In addition, I summarized the evidence
that different aspects of agency representations are closely integrated
throughout development. This integration is important for two reasons.
It provides evidence for the conceptual role of these representations and
makes it unlikely that the behaviors we see should be characterized in
merely spatio-temporal vocabulary. Also, that the representations of
different aspects of agency emerge together in development is not what
would be expected on a view of piecemeal learning of contingencies
among environmental events described in a spatio-temporal vocabulary.

These arguments are not conclusive, of course. The empiricist/
rationalist debate has engaged thinkers for over 2,000 years. It will be no
easier to settle in a particular case than it has been to settle in general. Still,
these considerations lead me to favor the core cognition hypothesis over
the empiricist alternative in the case of agent representations, just as in the
case of object representations.
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Long Evolutionary History?

As reviewed in chapter 3, the evolutionary history of the core cognition
of objects extends far into our primate past. Similarly, the hypothesis that
there is core cognition of intentional agency presupposes that repre-
sentations of goals, agents, and attentional/referential states arose during
evolution as the result of selection pressures. Two possibilities are con-
sistent with the core cognition hypothesis. Mind-reading abilities may be
a specific human adaptation, one of the central capacities that distin-
guishes us from our nonhuman primate ancestors. Alternatively, like
object representations, the capacity for agent representation may be part
of our primate heritage.

Many people have argued for the first possibility—that nonhuman
primates, even chimpanzees, do not represent agents and their actions in
terms of goals, referential actions, attentional or perceptual states. Pri-
mates do not establish shared attention; they do not point, indicate, or
monitor whether their partner shares attention on a third object. Also,
primates do not teach and, to a first approximation, they do not imitate.
Seeing a human or another primate acquire something attractive via some
kind of tool use does make it more likely that a chimpanzee will explore
that tool, but it will be as likely to discover a nonmodeled means to an
end as the modeled one. Thus, it seems as if the chimpanzee fails to
analyze the modeler’s actions telelogically or causally. These observations
are certainly consistent with the hypothesis that nonhuman primates lack
the core cognition of agency exhibited by young infants (e.g., Povinelli,
2000; Tomasello & Call, 1997).

On the other hand, nonhuman primates have neural mechanisms
that specialize in the detection of eye gaze, and chimpanzees follow a
gaze shift. In the wild, Rhesus macaques and other primates have been
observed hiding objects from the gaze of dominant individuals. Of
course, such observations are consistent with both lean and rich inter-
pretations. Following a shift in eye gaze may be a reflex, and primates
may simply learn to take into account eye gaze in the prediction of future
actions of conspecifics.

Indeed, Daniel Povinelli and Timothy Eddy (1996) provided striking
data in support of the lean interpretation of chimpanzee eye gaze. They
first confirmed that their chimpanzee subjects followed eye gaze and they
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also set up a situation in which chimpanzees knew to beg from a human
in order to be given a goodie on a plate in front of the person. Povenelli
then put two humans, each in front of a plate with good stuff on it,
varying whether each human could know what was on the plate. For
instance (see Figure 5.6), one was turned toward the plate, one away; one
had her eyes covered and one her mouth; one had a bucket over her head
and one did not. The dependent measure was which one the chim-
panzees begged from. The chimps were dreadful at this task, succeeding
(and this only after months of experience) only in the condition of Figure
5.7a, where one person was turned entirely backwards. From these
studies, Povenelli and Eddy concluded that chimpanzees do not under-
stand the relations between seeing and knowing.

However, recent work questions this conclusion. Brian Hare and his
colleagues (Hare, Call, Agnetta, & Tomasello, 2000) noted that chim-
panzees, like other primates, do not beg food from each other. Primates
simply do not use shared attention in the service of cooperation. Hare
reasoned that nonhuman primates might display an understanding of the
relation between seeing and knowing in experimental situations that
exploited their competitive, as opposed to their cooperative, motiva-
tional structure. This finding would be consistent with observations of
primates in the wild hiding food or an erection from a more dominant
animal. In the first study to explore this hypothesis, Hare set up situations
such as those diagrammed in Figure 5.7. A subordinate chimpanzee
watched as a piece of food was hidden. The important experimental
manipulation was whether the dominant chimp, visible to the subordi-
nate one, also saw where it was hidden. When released into the area of
the food, the subordinate chimpanzees went for the food that the
dominant ones had not seen hidden, as if they realized that this was food
that the latter would not know about and thus would not compete for.

Laurie Santos and her collaborators have extended these results to
Rhesus macaques. They carried out their research on the island of Cayo
Santiago, off the coast of Puerto Rico, that was described in chapter 4.
The macaques there forage for tasty food to supplement their adequate
but rather boring diet of monkey chow. The monkeys are particularly
interested in the fruits that the humans bring for lunch when they are
carrying out observational studies on the island. Monkeys will sometimes
try to steal a piece, although they are usually afraid to approach a human.
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Figure 5.6. Examples of pairs of people chimps must chose between to beg for food.
From Povinelli & Eddy (1996). Povinelli, D. J., & Eddy, T. J. (1996). What young chimpanzees
know about seeing.Monographs of the Society for Research in Child Development, 247, with permission
from Blackwell Publishers.
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Johnathan Flombaum and Laurie Santos (2005) carried out a series of
studies in which two humans approached a single monkey, stopping
some meters away, equally spaced to the left and the right of the monkey.
They put two platforms on the ground, each having one grape on it.
What was varied was the experimenters’ visual access to the grape (see
Figure 5.8). In one study one experimenter had his back turned to the
monkey, whereas the other looked at the grape. In another, one
experimenter’s eyes pointed to the side, whereas the other looked at the
grape. And in still another, one experimenter covered his eyes with a
square of paper while the other covered his mouth. In each of these cases,
the monkey retrieved the grape from the platform of the experimenter
who was not looking at it (Flombaum & Santos, 2005).

Both groups of researchers (Hare et al., Flombaum & Santos) have
confirmed these results in different related paradigms. For example, if a
grape seen by the monkey rolls from one location to another, the
monkey uses whether the experimenter/competitor could have seen this
motion (because it is screened or not) to decide whether to try to retrieve

Occluders
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Figure 5.7. Schematic depiction of the design of one of the trials in Hare, Call &
Tomesello (2000). The subordinate chimp watches the food being placed; the
dominant chimp does not see the placement. The dependent measure is whether the
subordinate chimp tries to get the food, relative to trials where the dominant
chimp can see the food. Both chimps are free to move around. Reprinted from Hare,
B., Call, J., Agnetta, B., & Tomasello, M. (2000). Chimpanzees know what con-
specifics do and do not see. Animal Behaviour, 59, 771–786, with permission from
Elsevier.
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Figure 5.8. Examples of pairs of people rhesus macaques could choose among if
attempting to steal food from one of the them (from Flombaum & Santos, 2005).
Reprinted from Flombaum, J. I., & Santos, L. R. (2005). Rhesus monkeys attribute
perceptions to others. Current Biology, 15, 447–452, with permission from Elsevier.
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it. Altogether, these studies make a strong case that nonhuman primates
understand the relations between seeing something and having infor-
mation about it.

Of course, just as in the infant studies, a lean interpretation of these
results is possible. Povinelli and his colleagues have argued that the pri-
mates’ behavior in competitive situations can be understood in terms of
generalizations they have learned about animal behavior—generalizations
such as “where somebody is looking predicts where he will go” or
“where somebody is looking predicts what he will reach for”—rather
than generalization about seeing and information. As in the case of the
related controversy between rich and lean interpretations of the infant
literature, it is nearly impossible to provide conclusive arguments that
might decide between the two classes of interpretation. In the animal case
we cannot help ourselves to learnability arguments, for it is the content of
primate adult representations that are under debate. As of yet, there have
been fewer studies of just how interconnected these representations of
primate looking are with other representations of agency, so this line of
argumentation for the rich interpretation is also not open to us. Indeed,
there has been little study of primates’ representations of actions as goal-
directed, and we know that primates are deficient, relative to young
babies, in many aspects of agent representations (joint attention, social
referencing, imitation).

Santos and her collaborators make what I consider a decisive argu-
ment for the rich interpretation (Santos, Flombaum, & Phillips, 2006).
First, as I argued for infants, they point out that the lean interpretation
leaves it a mystery how the monkey picks the correct statistical gen-
eralizations about behavior. For instance, every time eyes are pointed at
an object, so are mouths and noses, yet in the above studies, the monkeys
avoided the competitor that was looking at the grape, not whose mouth
was pointing at the grape. Second, they point out that the Rhesus studies
involve spontaneous behavior. These animals have not been trained. In
Povinelli and Eddy’s cooperative behavior studies, months of training led
chimpanzees to form the generalization that people whose whole body is
facing them are more likely to cooperate if begged from than are people
whose whole body is facing away. Povenelli’s studies show that the kind
of learning procedure called for in the lean interpretation surely exist. But
in Santos’s studies, the monkeys selectively focus on eyes in a first and
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only trial. Given the competitive ecological niche the monkeys exist in,
core cognition of eye gaze predicting the information another animal will
have would be expected to be drawn upon spontaneously in competitive
situations.

In the light of these results, Tomasello (Tomasello et al., 2005) has
modified his earlier hypothesis that nonhuman primates lack repre-
sentations of agency, attentional states, or goals. He now argues that these
representational capacities extend far into our evolutationary past. Still,
one must not forget that the human capacities for imitation, shared
attention, and referential behavior are dramatically greater than are those
of non-human primates. Several researchers are at work trying to char-
acterize how human core cognition of agency may be richer than that of
nonhuman primates, Tomasello’s current working hypothesis is that a
particular representational/motivational capacity distinguishes humans
from other primates: a capacity for shared intentionality and cooperation.
In a closely related proposal, Gergely and Csibra (2006) suggest that a
representational/motivational capacity for pedagogy distinguishes humans
from other primates. However these working hypotheses play out, non-
human primates have richer representations of agency than were
acknowledged even a decade ago.

In sum, I take the upshot of the primate literature to be that non-
human primates represent conspecifics and human beings as agents with
goals, perceptions and attentional states. Like object representations, core
cognition of agency has a long evolutionary past. However, unlike object
representations, in which the full core cognition system is observable in
primates, it is likely that hominid evolution contributed to the enrichment
of core cognition of intentional agency. It is true that primates do not
generally establish joint attention, do not show and point out things to
each other, do not teach, do not generally engage in cooperative problem
solving, and do not analyze others’ action in service of imitation.

Transcending Core Cognition: A Representational
Theory of Mind?

This chapter has developed the argument that infants and nonhuman
primates represent agents; specifically, they represent the agents’
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attentional states, referential actions, and goals. I have been careful not
to claim that infants and nonhuman primates have the capacity to
express the mental states of agents in terms of propositional attitudes.
We must distinguish between intentional states represented as direct
connections between agents, on the one hand, and objects and states of
affairs in the world, on the other hand—as when an agent is represented
as wanting or seeing an apple that is in the world, contrasted with
intentional states represented as propositional attitudes such as “believes
that there is an apple behind that screen,” in which the agent is
represented as having a representation of the apple in relation to the
screen. One crucial difference between these two types of representa-
tion is that only the latter allows another’s behavior to be predicted or
explained in terms of his or her false beliefs. Many eminent scholars
have offered analyses of a conceptual system 1/conceptual system 2

(CS1/CS2) transition between an early developing conception of
agents that cannot express representational mental states and a later one
that can. For representative examples, Perner’s distinction between a
want/belief psychology and a want/prelief psychology (Perner, 1991),
or Bartsch and Wellman’s (1995) distinction between a desire psy-
chology and a belief/desire psychology. These researchers have
hypothesized two fundamentally different forms of intentional attri-
bution to make sense of the striking failures of 3- and young 4-year-old
children on a wide range of explicit theory-of-mind tasks. The most
well-known of the explicit theory-of-mind tasks are the false-belief
tasks introduced into the literature by Heinz Wimmer and Joseph
Perner (1983). In one classic paradigm, the child is shown a vignette in
which an actor (e.g., Mary) watches as something (e.g., a cookie) is
hidden. Mary then leaves. While Mary is absent, the cookie is moved to
a new hiding place, after which Mary returns. The child is then asked
“Where does Mary think the cookie is?” or “Where will Mary look for
the cookie.” Since 1983, now hundreds of studies have used this basic
paradigm, or variations on it, and found that young 3-year-olds say that
Mary will think the cookie is in its true location and that Mary will look
there for it. The transition to adult performance (Mary will look for
the cookie where she saw it hidden before she left, because that is
where she thinks it is) occurs around the 4th birthday (see Wellman,
Cross, & Watson, 2001, for a meta-analysis of the factors that influence
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behavior on many replications and variations of this basic false belief
paradigm).

It is easy to see how adult performance requires a representational
theory of mind—this task requires that the child reason explicitly about
another’s beliefs, to recognize that those beliefs may be false, and to
predict another’s behavior on the basis of that person’s beliefs rather
than merely on his or her goals and the actions needed to realize those
goals. None of the infant studies reviewed so far require that the child
distinguish between true beliefs and false beliefs. However, as should
now be familiar, the failures of 3-year-olds on the standard false-belief
tasks are consistent with two broad classes of interpretation. On the
one hand, Flavell, Wellman, Perner, De Villiers, and others may be
right. A representational theory of mind (CS2) may be qualitatively
different from the cognition of agency available to infants and non-
human primates (CS1), and CS2 may require conceptual change for its
construction. Alternatively, developmental changes (perhaps matur-
ationally driven) in some ancillary processes required to succeed on the
false-belief tasks themselves—processes unrelated to the capacity for
representing beliefs—may underlie the developmental changes
observed on the false-belief tasks. For example, many authors have
explored the role that maturationally driven changes in executive
function play in helping the child adjudicate between two competing
responses based on where the object really is and where the agent last
saw it (e.g., Carlson, Moses, & Hix, 1998; Frye, Zelazo, & Palfai, 1995;
Leslie, German, & Polizzi, 2005).

Many hundreds of papers and many books have explored the
developmental changes in preschoolers’ theory of mind, and it is
beyond the scope of this book to do justice to this subtle and volu-
minous literature. I have not come to any conclusion for myself
with respect to whether the developmental changes observed in nor-
mally developing children during the fourth year of life constitute a
case of discontinuous development. Must the child build a represen-
tational system with more expressive power than its input? Is conceptual
change required? I see good arguments in favor of the developmental
continuity position and good arguments in favor of the conceptual
change position. In what follows I sketch some of the arguments
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for both positions. Chapters 8 through 11 take up cases where I believe
the arguments for conceptual discontinuity are conclusive.

Considerations in Favor of the Conceptual Change Position

One source of evidence for the conceptual change position derives from
an analysis of spontaneous speech of toddlers that is available in the Child
Language Data Exchange System (CHILDES) data base, which consists
of publicly available transcripts of conversations between adults and
children. Karen Bartsch and Henry Wellman (1995) analyzed the tran-
scripts of several children whose language was taped regularly from before
they were 2 until age 4 or later. They identified mentalistic use of terms
expressing desires, goals, preferences (such as “wants” or “likes”, on the
one hand, and terms expressing epistemic mental states (such as “knows”
or “thinks”), on the other. From the earliest ages (less than age 2),
children used desire and goal language mentalistically, in sentences such
as “He likes chocolate ice cream; I like vanilla,” “He wants to go to the
zoo.” In contrast, no uses of mentalistic language expressing epistemic
states emerged until age 3 or so (as in “I thought my socks were in the
drawer, but they were under the bed).” These differences emerge
whether the child is talking about true or false beliefs, about realized or
frustrated desires. Bartsch and Wellman showed that children command
the linguistic structures needed to use epistemic language, and that they
talk about mental states a lot, and that their input contains as much talk
about epistemic mental states as desires, preferences and so on. Bartsch
and Wellman concluded that 2-year-olds’ failure to talk about beliefs and
cognition reflects the lack of the relevant concepts, rather than (or in
addition to) problems in ancillary representational or computational
abilities needed for success on the false-belief tasks themselves.

Also, success on the false-belief task is correlated with success on a
wide range of other tasks that reflect a representational theory of mind,
even tasks that place very different information processing demands on
the child. These include tasks that reflect explicit awareness that seeing
leads to knowing, tasks in which children must articulate how they know
something (by seeing it, feeling it, or inferring it), tasks which require
distinguishing appearance from reality, tasks that require explicit rea-
soning about others perspectives, tasks that require access to warrants for
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beliefs, and many others (e.g., Flavell, Green, & Flavell, 1986; Flavell,
Everett, Croft, & Flavell, 1981; O’Neill & Gopnik, 1991). One example
will have to suffice to give you a feel for this wonderful literature. In an
experiment on children’s understanding of the sources of cognition,
Danielle O’Neill and Allison Gopnik (1991) introduced children to a
pink fur rabbit and a blue plastic horse. They then put one of the objects
into a large tube and the child’s task was to figure out which one was in
the tube. On some trials a semitransparent opening allowed the color (but
not the texture) to be seen. On other trials the child put their hands in the
tube and felt the object. On still other trials, a puppet whispered “psst—
it’s the rabbit.” On all of these trials both 3- and 4-year-olds correctly
identified which object was in the tube. The crucial question was this:
“How did you know? Did you tell by seeing it was the rabbit? By feeling
it was the rabbit? Because somebody told you it was the rabbit?” Three-
year-olds were at chance and 4-year-olds succeeded, and success is cor-
related with success on the false-belief task. This finding exemplifies
many that show correlations among quite different reflections of an
explicit representational theory of mind—in this case, between under-
standing the sources of cognition and understanding of the possibility of
and some of the conditions leading to false beliefs.

Jill de Villiers and her colleagues (2005) provided another argument
for the conceptual change position. They proposed (and provided
evidence for) a bootstrapping process that may underlie the construc-
tion of an explicit representational capacity for representing beliefs.
They point out that one particular type of linguistic structure is par-
ticularly important in expressing epistemic propositional attitudes, and
that it is relatively late to develop. These are linguistic expressions with
embedded propositions such that the overall sentence can be true even
if the embedded sentence is false. This semantic feature, opacity, holds
for complement structures such as “John said that Kerry won the
election,” or “Frank thinks that Kerry won the election.” Both sen-
tences could be true; John could be a liar and Frank could be
remarkably clueless. De Villiers found that children do not begin using
complement structures of this sort until their 4th year of life, and the
appearance of these linguistic forms in free and elicited speech is cor-
related with success on the false-belief tasks. This correlation holds even
for nonverbal false belief tasks, and tasks in which the question posed to
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the child is where the actor will look—that is, even ones that do not use
this construction in the task itself. Deaf children learning sign language
relatively late in life do not succeed on false-belief tasks until they
command complement structures, and training studies on communi-
cation verb complement structures help children pass a wide range of
theory-of-mind tasks that emerge at age 4. These data are consistent
with a bootstrapping story in which learning the semantics of com-
plement structures, especially opacity, plays a necessary role in creating a
representational theory of mind. I am quite sympathetic to this possi-
bility; chapters 8 to 11 discuss the role that bootstrapping processes of
the sort de Villiers is suggesting play in conceptual change.

Arguments Against Developmental Discontinuity

In spite of these considerations in favor of the conceptual change position
in this case, there are reasons to doubt it, at least in the form of a change
from a CS1 that is incapable of representing epistemic states to a CS2 that
is. Children do not reliably pass the false-belief tasks, the appearance/
reality tasks, the sources-of-cognition tasks, and so on, until late in their
fourth year or early in their fifth year. But a variety of task manipulations
dramatically lower the age of success. For instance, merely asking “where
will the agent look first for the cookie?” increases success rates, as if the
child interpreted the standard questions “where will she look?” and
“where does she think it is” as questions about her eventual behavior or
beliefs, once she’s found it (Garnham & Ruffman, 2001). Bartsch and
Wellman’s CHILDES analysis found the onset of epistemic mentalistic
language to be around 3:0, not 4:0. And finally, if one analyzes children’s
looking, rather than their answers to questions, one finds that as young as
2:9, when asked where the agent will look for the cookie, toddlers
reliably look first at the location where the agent last saw it, even though
they eventually respond to the explicit question incorrectly (Clements &
Perner, 1994). These data, along with convincing analyses of the per-
formance difficulties posed by the explicit false-belief tasks (Leslie et al.,
2005) and correlations between executive function measures and success
on false-belief tasks (Carlson et al., 1998; Frye et al., 1995), are consistent
with the claim that coming to succeed on the false-belief task around
age 4 does not reflect conceptual change.
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Recent infant studies from three different laboratories provide dra-
matic data that undermine the conceptual change position (Onishi &
Baillargeon, 2005; Surian, Caldi, & Sperber, in press). These data suggest
that preverbal toddlers represent epistemic states of actors. Specifically,
infants use what information an agent has about the location of a desired
object in predicting where that person will look for it.

All of these studies begin with the Woodward paradigm that elicits
representations of actions as goal-directed. Kristine Onishi and Renée
Baillargeon (2005) showed 15-month-old infants events in which an
actor placed a plastic watermelon slice into one of two boxes, and then,
on two familiarization trials, reached into the box as if to reach for the
slice therein. (Figure 5.9a). After this brief familiarization, infants were
shown a “belief induction trial.” The slice moved, in full view of the
infant, from its original box into the other box. The crucial manipu-
lation was whether the actor could see this motion or not. In the latter
case, the back of the stage was completely closed off, blocking the view
of the actor (Figure 5.9b). After this belief induction trial, the actor
(now visible again) reached into one of the boxes. There was only one
test trial per infant, so comparisons of looking times are between sub-
jects. In the case where the actor saw the movement into the new box,
infants looked longer when the actor reached into the old box than into
the new box. This is simply a replication of Woodward; the infant
expects the actor to continue reaching for the same object and tracks the
change of location of that object. The only difference from Wood-
ward’s paradigm is that the actor is reaching for a hidden goal object.
But, when the actor did not see the watermelon move (Figure 5.10b),
infants looked longer when the actor reached into the new box (where
the child knew the slice to be) than in the old box (where the actor last
saw the slice).

Further conditions ruled out lean interpretations of these data based
on low-level strategies; infants did not expect the actor to reach where
the object was actually hidden, where the hand had previously sear-
ched, or where the actor had last attended. Onishi and Baillargeon
(2005) conclude, “Whether the actor believed the toy to be hidden in
the green or the yellow box, and whether this belief was in fact true or
false, the infants expected the actor to search on the basis of her belief
about the toy’s location. These results suggest that 15-month-olds
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already possess (at least in a rudimentary and implicit form) a repre-
sentational theory of mind. They realize that others act on the basis of
their belief, and that these beliefs are representations that may or may
not mirror reality.”

In sum, Onishi and Baillargeon appeal to infants’ representing the
agent’s representation of the location of the apple or the slice—the agent’s
beliefs or the agent’s information about where the object is. Clearly, this
rich interpretation is consistent with these data, but can we also understand
them in terms of conceptual machinery we have already granted pre-
linguistic infants—representations of agents’ goals and attentional states?
Conceivably, we can. Perhaps the computations concerning what an actor

Familiarization trial 1

Familiarization trial 2 and 3B

A

Figure 5.9. Schematic depiction of the design of one of the conditions in Onishi
and Baillargeon (2005). A and B—familiarization files. Person puts object in blue box
and then reaches for it. C. One version of belief induction trial—when the person
cannot see, the object moves from blue box to yellow box. From Onishi, K. H., &
Baillargeon, R. (2005). Do 15-month-old infants understand false beliefs? Science, 308
(5719), 255–258. Reprinted with permission from AAAS.
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will do take into account where the actor was attending during previous
events. On this leaner interpretation these data provide even stronger
evidence that any we have seen so far that the two threads of infants’ agent
representations (attribution of goals and attributions of attention and
seeing) are integrated, but they do not show that infants’ expectations are
guided by representations of beliefs.

As these data are brand new, at present we have no way of deciding
between a desire/attention psychology and a desire/belief psychology
interpretation of them. Personally, I favor the richer interpretation. The
simplest interpretation of why the baby monitors perceptual access when
the locations are switched is that the baby realizes that the agent gains
information from what he or she sees. Otherwise, the rules the baby is
following are unmotivated.

That children are reasoning about the information available to the
agent is strongly suggested by another in the line of studies from Onishi
and Baillargeon. In this study, the slice is put into the green box, and
then, when the actor is not looking, the locations of the whole green
and yellow boxes are switched. In this case, apparently infants reason that
the actor can figure out where the object is, because they look longer
if the actor reaches into the yellow box, even though the yellow box is in
the location into which the actor has reached before. In the companion
condition, the two boxes are the same color (both green). As before, the
infant sees the slice put into the left-most box, and is familiarized with
the actor reaching into it. Again, when the actor is not looking, the
locations of the whole boxes are switched. Now the infant looks longer
if the actor reaches into the right-most box, apparently because they
reason that the actor has no information (perceptual or inferential) about
where the slice really is. At this point, any lean interpretation of the sort
sketched above breaks down.

I conclude, tentatively, that prelinguistic infants represent the
information a person gains from attending to objects and events in the
world. Prelinguistic infants have the capacity to represent an agent’s
epistemic mental states as well as its goals and attentional states. If this is
so, then the wide-ranging developmental changes in children’s theory of
mind that take place between ages 2 and 4 do not reflect conceptual
change between as CS1 in which epistemic states cannot be represented
to a CS2 in which they can. Of course, this conclusion leaves a great
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mystery to be solved—namely, understanding 2- and 3-year-olds’ failures
on the battery of theory-of-mind tasks that reflect a representational
theory of mind. Why, if infants understand that seeing leads to cognition,
do 3-year-olds fail the sources-of-knowledge tasks? Why does command
of complement structures in language predict success on tasks that reflect
the child’s theory of mind?

There are several, not mutually exclusive, ways of resolving this
paradox. It is possible that representations of others’ informational access
in core cognition are implicit, embodied in the computations that operate
over representations of goals and attentional states. On this view, language
learning is required to create representations that contain explicit mental
symbols for concepts like thinks, believe, information, cognition. We will see
an example of this type of mental construction when we consider the
origin of mathematical concepts (chapters 8 and 11) and when we
consider the origin of explicit scientific cognition (chapters 10 and 11).
More weakly, even if core cognition itself is articulated in terms of mental
symbols for such concepts, perhaps the creation of an explicit, verbal,
system of representation makes mental state attributions more salient and
robust, more stable and more likely to be recruited in the complex ebb
and flow of ongoing events. This would be an example of what is
sometimes called “weak Whorfianism” in the literature on the effects of
language and thought, and we shall see examples of this type of learning
in the pages to come as well (see chapter 7).

Conclusions: Core Cognition of Intentionality

This chapter makes a case for a third system of core cognition, in
addition to object representations (chapter 3) and number representations
(chapter 4). I do not mean to imply that these three exhaust core cog-
nition; it is an open empirical question whether there are other core
domains. Rather, my goal has been to demonstrate the existence of core
cognition and to illustrate its properties. The identification of a candidate
core domain generates issues for further research. When in development
(during phylogeny or ontogeny) does the eye-gaze-detection device
output intentional attributions—that an agent is looking at something,
indicating something, attending to something, gathering information

212 The Origin of Concepts



about something? How many subsystems of core cognition are dedicated
to the problem of agent representation, and how are they related? Are
their outputs integrated from the beginning? How far back in our evo-
lutionary history did our ancestors create agent representations with the
same content and computational roles as those of human infants? Finally,
what underlies the transition to an explicit representation of beliefs that
we do not see robust evidence for until the fourth year of life?

These questions are very much open and many talented researchers
are at work answering them. Before turning to the question of how core
cognition is transcended in the course of conceptual development
(chapters 7 through 11), chapter 6 considers the possibility that there may
be innate representations with conceptual content that are not embedded
within systems of core cognition.
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6
Representations of Cause

Contrary to the theories of the British empiricists, as well as those of
Piaget and Quine, the representational primitives from which the human
mind is constructed are not solely perceptual or sensori-motor. Concepts
such as object and agent are the output of innate input analyzers, embedded
in distinct systems of core cognition. Thus, core cognition is the source of
some innate representations with conceptual content. This line of argu-
ment raises an important question: Might core cognition be the source of
all innate concepts? Are all innate representations with conceptual con-
tent embedded within one or another distinct system of core cognition?
If so, transcending core cognition will require integrating representations
from different core cognition domains.

As we shall see in the chapters that follow (chapters 8 through 11),
new representational resources are indeed built in just this way—by
integrating what were previously distinct systems of knowledge. Some
thinkers have speculated that the capacity for such integration requires
language (and indeed, the bootstrapping processes described below require
external symbols), and thus that the capacity for such integration may be
uniquely human (e.g., Mithen, 1996; Spelke, 2003). Counter to this spec-
ulation, it is also possible that some innate conceptual resources are central,
and thus integrative, rather than encapsulated within core cognition.

Representations of cause present an ideal case study for exploring
these possibilities. However the vexed question of the metaphysics of
causation plays out (are there really causes in the world, or merely
conditional probabilities and spatio-temporal relations among events?),
there is no doubt that human beings represent the world in terms of a rich
causal texture. Our language is shot through with causality (“he made it
happen, he broke it”), and children master these constructions very early
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in language acquisition (Bowerman, 1974; Hood, Bloom, & Brainerd,
1979). There is a huge literature on adults’ causal perception (Michotte,
1946/1963), and on the psychological process that lead participants in
studies to infer causation from patterns of statistical relations among
events (Cheng & Novick, 1990; Dickinson & Shanks, 1995; Gopnik et
al., 2004; Pearl, 2000).

For adults, causal representations certainly integrate distinct domains
of knowledge. We represent causal relations across core domains (e.g., an
agent’s hitting an inanimate object causes the latter to move) as well as
between events not embedded in any domain of core cognition (e.g.,
smoking causes cancer, building a dam creates a lake, watering one’s
crops causes growth.). To be sure, causal representations are also part of
each domain of core cognition: representations of contact causality are
part of our core cognition of objects (an object at rest goes into motion
upon being contacted by a moving object) and representations of tele-
ological causality articulate core cognition of agents (see chapter 5).

The question here is how the human capacity for causal repre-
sentations arises. The broad outlines of how this question might be
answered should now be clear. There may be no innate representation of
cause, and some processes (as yet not discussed) through which human
beings transcend innate knowledge yield the capacity to represent the
world in causal terms. The empiricist hypothesis that causal representa-
tions are built from sensory primitives is an example of this constructivist
family of theories, and it has its present-day adherents (e.g., Cohen,
Amsel, Redford, & Cassasola, 1998; Cohen & Chaput, 2002). Another
possibility from this family of theories is that causal notions are con-
structed from noncausal resources from core cognition, as I have argued
that a vitalist biology is constructed from resources from core cognition
that lack a concept alive (Carey, 1985; 1999).

Alternatively, the capacity for causal representation may be innate.
This position, too, has its modern adherents; indeed, we may distinguish
several nativist proposals. Causal representations may initially be
embedded within a single system of core cognition—either core cognition
of objects and their interactions or core cognition of agents and their
capacity to effect changes in their worlds. Finally, a third possibility not
yet considered in these pages presents itself: the capacity for causal
representations may be an innate, but central, part of an innate
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representational resource that is neither modular nor domain-specific.
For example, there may be innate learning mechanisms that take com-
putations of conditional probability as input and that output causal
representations (e.g., Gopnik et al., 2004).

Each of these nativist positions privileges a different aspect of our
mature concept of causality as its developmental source. Albert Michotte
posited core representations of mechanical causality (as when a moving
billiard ball hits another, causing it to go into motion) as the ontoge-
netically primary ones. This view highlights the transmission of causal
power, a primitive mechanistic notion, as the source and essence of our
concept of cause.

Others, such as Michotte’s contemporary Maine de Biran, suggested
that core cognition of human agency includes a concept of internally gen-
erated causal power—that which supports the capacity for self-generated
motion. Representations of intentional action entail a capacity to effect
changes in the world, and this is a causal notion. According to de Biran:

A being who has never made an effort would not in fact have
any idea of power, nor, as a result, any idea of efficient cause. He
would see one movement succeed another, e.g. one billiard ball
bump into another and push it along; but he would be unable to
conceive, or apply to this sequence of movements, the idea of efficient
cause or acting force, which we regard as necessary if the series is to
begin and continue. (quoted in Michotte 1946/1963, p. 11)

De Biran’s view highlights agency—a causal agent effecting changes
in the world through the action of internally generated force—as the
source and essence of our concept of cause.

Still others posit an innate capacity to compute causal representations
from patterns of statistical dependence. Those who credit animals with
causal representations of the contingencies in operant and classical con-
ditioning paradigms fall in this camp, as do those who see causal repre-
sentations as a constrained network of conditional probabilities, called a
“Bayes-net representation,” and see causal learning as the process of
constructing such representations from representations of the conditional
probabilities among events. This view highlights the idea of difference
making and counterfactual representations (if the cause did not happen,
the effect would not happen) as the source and essence of our concept of
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cause (Gopnik et al., 2004, Pearl, 2000; Sloman, 2005; Spirtes, Glymour,
& Scheines, 2000; Tenenbaum & Griffiths, 2001; J. Woodward, 2003).

My discussion of these options unfolds as follows. First, I lay out
Michotte’s proposal that human causal representations are part of core
cognition of objects and of object motion. I then turn to the evidence
that young infants represent Michottian contact causality, considering
leaner interpretations for the phenomena that have been taken as evi-
dence for infants’ causal perception in Michottian events. The data
strongly suggest that by 6 months of age infants have rich causal repre-
sentations of Michottian launching, entraining, and expulsion events.
Nevertheless, these same data undermine Michotte’s hypothesis con-
cerning the domain-specific and modular source of these causal repre-
sentations. The data reveal a role for representations of human agency in
infants’ interpretations of physical causality. I conclude with a discussion
of the current status of rationalist versus constructivist theories of the
source of causal representations, and with some speculations concerning
the existence and nature of innate central conceptual representations.

Michotte’s Picture

In his landmark book The Perception of Causality, Albert Michotte offered a
theory of the psychological origin of human causal representations.
Michotte discovered the phenomenon of causal perception. He showed that
under specifiable circumstances, “certain physical events give an imme-
diate causal impression, and that one can ‘see’ an object act on another
object, produce in it certain changes, and modify it in one way or another”
(Michotte, 1946/1963, p. 15, emphasis in original). One example is the
launching event: object A approaches and contacts object B, and then
immediately afterwards object B goes into motion, or changes motion
path and/or speed. Using the reports of trained observers, Michotte
detailed the conditions necessary to produce an impression of causality. He
found that launching is perceived when and only when the two motions
have parameters consistent with a single motion or causal impetus trans-
ferred from one object to a second, perceptually distinct object. Based on
his experimental results, Michotte proposed the existence of a special
mechanism in the mind that transforms privileged inputs—visual
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sequences of events with certain spatio-temporal parameters—into a
domain-specific output, a “genuine causal impression” of motion events.

All of the data Michotte collected relied on verbal reports by adult
observers. Nonetheless, he took a strong position on the origin of causal
representations, claiming that the input analyzer that yields causal per-
ceptions is innate and is the source of all subsequently developing causal
representations. Michotte did not have the theoretical vocabulary to talk
of core cognition and modularity. Still, this is what he was proposing. A
module is a cognitive mechanism that is obligatory and encapsulated; the
translation from privileged input to domain-specific output within a
module is not (or is minimally) influenced by other beliefs or knowledge
in the mind of the observer. Michotte hypothesized that the privileged
input to causal perception was spatio-temporal parameters of the inter-
actions among moving entities. He hypothesized that causal perception
was highly domain specific in its output as well—limited to caused
motion alone. He acknowledged that adults represent causal relations
involving state changes, but he believed that these causal representations
were extensions of the initial module, which takes spatio-temporal data as
input and outputs representations of caused motion. Michotte, of course,
did not know of the Spelke and Baillargeon work on core cognition
of objects, but his proposal places the origin of causal representations
within this domain. Indeed, Spelke formulated the three constraints on
object motion that guide infants’ model building in this domain as the
“three Cs—cohesion, continuity, and contact (causality).”

Michotte’s evidence for modularity included the observation that
even when the observers knew that an actual causal interaction was
impossible, because the entities involved were moving lights or marks
on paper, the impression of causality was not reduced. Furthermore,
the psychophysical parameters that determine whether causality is per-
ceived are not faithful to the properties of real causal interactions in
our friction-full Newtonian world, making it unlikely that these para-
meters are determined by explicit knowledge of (or even experience
with) the physical world. The claim that the input analyzer that computes
launching causality is innate, and operates continuously through devel-
opment, is a paradigm example of hypothesized core cognition.

Since Michotte, Anne Schlottmann and her colleagues (Schlottmann
& Shanks, 1992) have provided convergent evidence for the robust
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encapsulation of perceptual causality representations. In one experiment,
Schlottmann directly pitted the spatio-temporal signature of launching
against patterns of covariation. Subjects watched an interaction in which
object A approached object B, and sometime later object B went into
motion. What actually predicted the onset of object B’s motion was a
change in the color of object B. The results revealed two independent
systems for detecting causal interactions: while subjects were able to
explicitly judge that the color change was necessary and sufficient for
object B’s motion, they also reported perceiving launching (i.e., that
object A transferred its motion to object B, making object B go) when
and only when the spatio-temporal conditions for a launching event
were met. These causal perceptions were independent of the color
change. Even with many blocks of experience with the actual contin-
gencies, the factors that affected perceived causality remained the spatio-
temporal parameters Michotte described.

As mentioned above, Michotte held that the inputs to the caused
motion input detector are specified purely in spatio-temporal terms;
the device is blind to the ontological status of the objects involved.
Schottmann, and her colleagues (Schlottmann, Allen, Linderoth, &Hesketh,
2002) tested this prediction in an experiment with participants from
3 years of age through adulthood. Observers indicated whether they saw
each event as launching, chasing, or as two independent motions. The
objects involved in each event moved either nonrigidly (a little like a
caterpillar), specifying animate motion, or rigidly, consistent with inanimacy
(Michotte, 1946/1963; Kanizsa & Vicario, 1968). This study yielded stable
explicit judgments from the youngest children of any to date. Consistent
with Michotte’s views about the developmental history of perception of
launching, Schottmann found that even the youngest children saw these
events as causal, just as did adults. Also consistent with Michotte’s views on
modularity, the children were utterly impervious to the ontological status of
the moving entities in these events. Whether children saw an event as
involving mechanical causality (launching), chasing, or neither was entirely
determined by its spatio-temporal parameters. This was largely true of adults
as well, although the judgments of adults were slightly modulated bywhether
the entities moved as caterpillars or as blocks.

Schlottmann’s experiments support the encapsulation of the mech-
anism for perceived causality: beliefs about the actual contingencies or
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mechanisms governing a particular causal interaction, or about the
properties and causal dispositions of the entities, do not easily infiltrate the
computation of a causal impression. Schlottmann’s studies also provide
evidence for the continuity of causal perception through childhood into
adulthood. All of this evidence, though, comes from studies of young
children and adults, not infants. Michotte’s developmental claims con-
cerning the ultimate origins of the capacity for causal representations
must be addressed with studies of creatures who are closer to the original
state—young infants.

Causal Perception: Do Infants Represent the Causality in
Michotte Launching Events?

The question of just when infants first interpret Michotte-type launching
events in causal terms must be approached in two steps. First, we will
want to know whether infants are sensitive to the spatio-temporal
parameters of launching. Then, we will want evidence that infants’
representations of launching have at least some causal content. To
summarize the current state of the art, there is no doubt that young
infants are sensitive to the spatio-temporal parameters that distinguish
contact causality from noncausal interactions. Although it is much more
difficult to show that they attribute causality in these events, this chapter
presents an extended argument that they do.

The simplest experiments exploring infants’ representations of
launching events are habituation studies. They begin by letting infants
watch an event in which object B goes into motion immediately upon
being contacted by object A. After habituation, infants are shown either
more launching events or events in which there was a temporal delay or a
spatial gap. Events with spatial or temporal gaps retain the simple
sequence of one event followed by another, but they do not yield a
perceptual experience of causality in adults. As young as 4months, infants
successfully make this discrimination, expressed by regaining interest
(increasing looking time) to the spatial or temporal gap events (Leslie,
1982; Cohen et al., 1998). Similarly, if habituated to an event with a
spatial or temporal gap, infants recover interest to a launching event.
These results show that infants are sensitive to the spatio-temporal
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parameters that determine the adult perception of launching, but they do
not demonstrate that infants perceive this distinction in terms of causality.

The challenge, of course, is to show that the infants’ representations
have some content that goes beyond generalizations stated in perceptual
or spatio-temporal vocabulary. Many have risen to this challenge, most
notably Alan Leslie and Les Cohen and their collaborators. The first
approach was to demonstrate that infants’ representations give different
status to the agent and the patient in launching events, in the face of
failure to do so when two events follow regularly, one after another, but
are not causally related. Alan Leslie (Leslie & Keeble, 1987) habituated
two groups of infants to events in which one object A approached and
made contact with a stationary object B from the left and stopped, after
which object B went into motion to the right and then stopped. The
only difference was that in one group object B went into motion
immediately upon being contacted, specifying launching for adults, and
in the other group there was a pause before object B went into motion,
such that adults do not perceive a causal relations between the two
motions. In spatio-temporal terms, each motion could be described
in terms of direction and speed of motion of each object and spatio-
temporal relations between the two motions (motion of object B
follows motion of object A, either simultaneously upon contact or upon
a temporal gap). If this is the vocabulary in which the infants were
representing the events, then reversing the motion (having object A
be stationary at the beginning, having object B emerge from the right,
move toward, and contact object A, after which object A moves to the
left and stops) should be equally novel in the two cases. But if the original
launching event is represented as A causes B to move, and the original
nonlaunching event is seen merely as A moves and then B moves, then it
is possible that reversing the launching event, in which the roles of the
agent and patient are reversed, will be more noticeable to the baby than
reversing the nonlaunching event. This is what happened: 6-month-old
infants dishabituated to the reversal of the launching event whereas they
did not dishabituate to the reversal of the nonlaunching event. This
experiment suggests that young infants represent launching events in
terms of concepts that go beyond spatio-temporal descriptors.

Leslie Cohen and Lisa Oakes (Oakes & Cohen, 1990) attacked the
problem of establishing whether young infants represent launching
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events causally in a second way, asking if infants categorize different
spatio-temporal patterns together on the basis of whether they specify a
causal interaction or not. In one series of studies, they habituated babies
to launching events or to events that are seen by adults as noncausal for
one of two reasons: either there was a period of time after contact by
object A before object B started to move (a temporal gap), or object A
stopped short of object B before object B went into motion (a spatial
gap). The habituated event was then contrasted with each other event.
By 6 months of age, infants generalize habituation from one noncausal
event to another while dishabituating from either noncausal event to the
causal one. Thus, at the same age infants are sensitive to the role reversal
in Michottian launching events, but not in events with gaps, they cate-
gorically distinguish causal from noncausal interactions.

These experiments suggest that infants perceive causality in these
events, just as do adults, but of course they do not conclusively show this.
Convergent evidence for this conclusion derives from experiments on
infants’ causal inferences in which they do not see the causal interaction. As
I describe these data, please keep two points in mind. First, these data
greatly increase our confidence in attributing representations with the
content cause to young infants. Second, at the same time they undermine
Michotte’s contention that the sole source of our causal representations is
a data-driven modular input analyzer that yields representations of cause
from spatio-temporal evidence alone, for they show that causal inferences
are influenced by representations outside of Michotte’s hypothesized
module (spatio-temporal input alone, solely caused motion as output) as
young as we have evidence for causal representations at all.

Causal Inferences: Beyond Data-Driven Causal Perception

Michotte explicitly distinguished between the causal impression that is
the output of a perceptual analyzer, on the one hand, and inferential
extensions and applications that the observer makes using that causal
impression, on the other. Only the perceptual component is delivered by
the operation of the perceptual module. If infants’ earliest causal repre-
sentations are determined exclusively by the operation of the perceptual
module, Michotte would therefore predict that, at some ages, infants
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perceive causality in simple interactions like launching events, but they
cannot make inferences about unseen causal interactions.

William Ball (1973) carried out the very first experiment using the
violation-of-expectancy looking-time method, using it to address infants’
understanding of contact causality. In his study, he required infants to
make an inference about unseen causal interactions. Ball habituated
infants to events, similar to those shown in Figure 6.1. An event began
with a screen visible on a stage floor with object B (in this case a block)
partially visible at its right edge. A second object, A (another block),
moved onto the stage from the left and went behind the screen. After
timing consistent with a launching event, the block went into motion
and stopped, visible, to the right of the screen. Infants’ looking at the
outcome of this event was monitored, and the trial was terminated when
they looked away from the outcome array for 2 seconds or more. The
whole stage was then covered by curtains, after which the curtains were
opened, showing the beginning array, and the event was repeated as
before. Infants were shown this event over and over until they habituated
to it—that is, until their looking at the outcome arrays was half of its
initial levels.

How had the infants interpreted this event? Did they think that the
first block had caused the motion of the second via contact? To address
this question, Ball then showed infants two new events, in alternation: an
expected event (as defined by adult expectations) and an unexpected
event. The events were exactly like the habituation event, except that
there was no screen. In the expected event, in which contact causality
explains the motion of the second block, the first emerged from the right
edge of the stage, moved toward and hit the block, after which the block
immediately went into motion and then stopped as before (Figure 6.1,
expected outcome). The unexpected event was identical, except that the
first block stopped short of the second, and after a short period of time,
the block went into motion and then stopped as before (Figure 6.1,
unexpected outcome).

The participants in Ball’s experiments (ages 2 to 26 months) looked
longer at the unexpected event than at the expected event (Ball, 1973; for
replications see Kosugi, Ishida, & Fujita, 2003; Muentner & Carey, 2007;
Spelke, Phillips, & Woodward, 1995). Ball concluded that the event in
which there was no contact between the balls was unexpected for infants,
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just as it is for adults, and thus that infants represent Michotte contact
causality. Ball’s experiment was never published, but subsequent studies
have replicated his result in infants as young as 6 months of age. This
pattern of looking at the test trials is not observed when the habituation
trials are omitted from the experiment: observing the occluded interac-
tion during habituation is necessary to produce asymmetric looking
behavior on the test trials. That is, even though contact between the two
objects was not visible during the habituation trials, infants treat the

 (a)  Contact event (b)  Gap event

Habituation event

Figure 6.1. Schematic depiction of the design of Ball (1993); Muentner & Carey
(under review) replication. During habituation, a block comes from off stage, passes
behind a barrier after which a partially hidden block goes into motion and stops at the
stage edge. During test trials, the barrier is removed and on ‰ of the trials, the train
hits the block, upon which the immediately goes into the motion and on the other ‰
of the trials, the train stops short of the block, upon which the block immediately goes
into motion.
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contact test event as familiar based on the partially occluded habituation
event. For this to be so, infants must form an inference or expectation
about the unseen causal interaction occurring during habituation. Thus,
as young as there is evidence that infants perceive causality in Michotte’s
launching events, they recruit these representations even when not part
of a data-driven perceptual process.

Although infants are making an inference in this experiment, the
inference does not transcend the vocabulary of Michottian launching
events (i.e., the inferences concerned the relative motions and contact
between two objects). In a recent extension of Ball’s study, Paul
Meuntner and I (2007) explored whether 8-month-olds’ inference of
contact in these events is restricted to this vocabulary. That is, consistent
with Michotte’s claims for the restriction of perceived causality to motion
events, would infants fail to infer causality in such events if the effect was
a state change rather than caused motion? Before we tested infants, we
wanted to make sure that adults would infer a contact causality in the
state change events we planned to show infants. We showed adults the
events infants would be habituated to, in which a train went behind a
barrier that that partially hid a block, after which the block underwent
some change (motion or a state change). We asked the adults to describe
the events and then we had them predict what was happening behind the
screen. Adults used causal language and predicted that the train would
contact the block before both state changes and the motion of the block.
Not astonishingly, adults’ inferences concerning causal interactions
transcend motion events, even if Michotte is right that there is no direct
causal perception in cases of state change. More interestingly, adults
expect contact between the train and the box as part of the causal event
for state changes as well as for block motion.

We then asked how infants encode these events. The habituation
events are diagrammed in Figure 6.2 (top panel, color change and music;
bottom panel, box collapse). The full design was modeled on Ball’s study
(Figure 6.1). As in Ball’s studies, at the outset of each habituation trial
infants saw an object (in this case a block) partially hidden behind a screen.
They were habituated to a moving object (in this case a train) entering
behind the screen, after which an outcome occurred. The full experiment
had three groups of infants, with three different outcomes. One outcome
was motion of the block, as in Ball’s experiments (Figure 6.1). The other

226 The Origin of Concepts



outcomes were state changes—the block either changed color and made a
sound or fell apart into six separate pieces (Figure 6.2). We expected to,
and did, replicate Ball’s finding in the motion outcome. That is, in test
trials infants looked longer at gap events in which the train approached the
block and stopped short of it before the block went into motion than they
did at events in which the train made contact with the block before it
went into motion. The question we were interested in was whether
infants would also expect contact in the state change events. In neither of
the state change events did infants differentiate the two types of test trials.
Their attention was not drawn to events in which the state change
occurred in spite of no contact between the train and the block.

This pattern of results has two possible interpretations. First, infants
may not have made a causal construal of the initial state change event.
Alternatively, they may have construed the habituation event causally,
but may have no expectation that contact is needed for events in which
the motion of one object causes a state change in the other. Subsequent
experiments, described below, confirm the first interpretation. The
results presented so far are consistent with Michotte’s proposal that ini-
tially causality is represented only in the case of motion events, even
while confirming that these causal representations already support
inferences by infants 6 to 8 months of age.

However, further experiments undermine Michotte’s hypothesis
concerning the domain specificity of the information relevant to attri-
butions of causality early in infancy (spatio-temporal information only).
Contrary to claims of encapsulation, infants’ causal inferences are robustly
influenced by information other than spatio-temporal parameters of the
interaction, some of which are most definitely derived from core cogni-
tion of agents. Additionally, infants can interpret these state changes as
caused by contact with a possible agent at roughly the same age as they
show the first evidence of interpreting Michottian motion events causally.

Infants’ Causal Inference: Beyond Spatio-Temporal
Information

Both Michotte and the researchers who have followed him provide
substantial evidence that the causal impression produced by a launching
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event depends on the spatio-temporal properties of the two entities’
motions, but not on any intrinsic properties of the entities themselves.
Michotte concluded that “the causal impression which appears in the
Launching Effect is independent in principle . . . of the phenomenal
aspect of the objects—their size, shape, color and constitution” (1946/
1963, p. 85). A causal impression could even be evoked by the right
sequence of motions involving a wooden ball (object A) and a circle of
light (object B). If the original idea of cause is the output of this modular
perceptual mechanism, then at the earliest ages when infants perceive
causal impressions of launching, their causal inferences should be similarly
blind to the nature of the entities in the interaction. It simply is not so.

A large body of recent work shows that, in addition to perceiving
causal impressions, very young infants track the ontological status and
stable causal dispositions of the participants in causal interactions, and they
use this information to inform their interpretation of the causal interac-
tion itself. Within a single causal interaction, two entities play distinct
roles: I call these roles the “situational agent” and “situational patient,”
respectively. For example, in an archetypal causal sequence, a hand
moves a billiard cue, which hits the white ball, which rolls across the table
to hit the red ball. The white ball plays the patient role in one specific

Figure 6.2. Schematic depiction of the habituation events in the Muentner & Carey
(under review) state-change version of Ball’s causal inference study. Top panel: train
goes behind screen, after which the box’s front panel lights up and the box plays a
tune. Bottom panel: train goes behind screen, after which the box breaks into 6

pieces.
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causal interaction (with respective to the agentive billiard cue), and then
the agent role in the subsequent interaction (with respect to the red ball as
patient). Research on infants’ inferences about the participants in a given
causal interaction can be divided into two streams: (1) studies investi-
gating infants’ causal inferences as a function of their representations of
the entities in the patient role, and (2) studies investigating the role of
representations of the entities in the agent role. Consider first how
representations of the stable causal dispositions of entities in the patient
role influence infants’ causal inferences.

Effects of the Entity in the Situational Patient Role

Infants’ inferences about partially occluded launching events, as in Ball’s
experiment described above, depend critically on the ontological status of
the entity the infant sees in the patient role. The results described above
—longer looking at noncontact than contact test trials—applies only
when the entity in the patient role is an inert inanimate object. Elizabeth
Spelke and her colleagues (Spelke et al., 1995) showed infants events
modeled on Ball’s experiment, except that the objects A and B were
human beings. Six-month-old infants in the new people version did not
differentiate contact and noncontact test trials; a person going into
motion without having been contacted by another person did not draw
more attention than a person going into motion after having been
contacted by another moving person (see also Kosugi & Fujita, 2002).

The object in the patient role has a particularly important and clear
effect when infants make inferences about noncontact events. When an
event fulfills the spatio-temporal criteria for launching, a perceptual input
analyzer produces a “causal impression”—independent of the identities
of the interacting objects. But what if the event does not fit the criteria for
launching, because of a spatial gap? Laura Kotovsky and Renée Baillar-
geon (2000) argued convincingly that 7.5-month-olds’ response to
noncontact events depends on their prior categorization of the object in
the patient role. As mentioned above, many previous studies have
reported that, prior to habituation, infants do not look longer at
launching events with or without a spatial gap. This might seem sur-
prising. If launching without a spatial gap is infants’ paradigm instance of a
causal interaction, then one might expect the gap event to be surprising
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even without habituation. On the contrary, Kotovsky and Baillargeon
argued that infants in each of these previous studies directly observe
object B moving without contact, and therefore categorize object B as
dispositionally capable of self-generated motion. In these experimental
contexts—using unfamiliar objects presented either live or on a video
screen—there is no reason a priori to categorize the novel objects as self-
moving or inert, so neither categorization is inherently surprising, and
infants look equally at both gap and no-gap events.

Kotovsky and Baillargeon provided evidence for this interpretation
in a new experiment in which 6-month-old infants are given robust and
consistent evidence that the entities in the interaction were inert, both
outside of the experimental room and during the experimental proce-
dure. Instead of habituation, infants are simply familiarized to the appa-
ratus: a ramp (the path for object A), object B lying stationary near the
bottom of the ramp, and between them a barrier that either completely
blocks access from the ramp to object B or has a gap. The bottom half of
the barrier and the near end of object B are then occluded by a screen,
and infants see object A placed at the top of the ramp and released, and
then roll down the ramp and disappear behind the screen. Object B then
moves across the stage, in a manner consistent with launching by object
A.

The critical features of this experiment are that (1) infants have
evidence to classify object B as dispositionally inert, but (2) there are no
habituation trials. Nevertheless, infants show increased looking (i.e., their
attention is drawn) when object B moved in the full-barrier case where
contact was not possible, relative to the part-barrier condition where
contact would have occurred. That is, if the entity in the patient role is
categorized in advance as inanimate and inert, then infants look longer at
an apparent noncontact event even on the very first trial.

Kotovsky and Baillargeon showed that the reverse is also true: if
object B (categorized as inert) does not go into motion after object A
disappears behind the occluder, infants look longer when contact was
possible than when it was impossible, as if they are surprised that the inert
object in the patient role can resist the causal impetus of the first motion.
Recent studies from Baillargeon’s laboratory show that 5-month-old
infants are surprised if an inert object resists contact causality (i.e., does
not move when hit) but are not surprised by this event if the patient was
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previously categorized as self-moving (Luo, Kaufman, & Baillargeon, in
press).

These results highlight the dissociation between the output of the
perceptual module—which detects the spatio-temporal profile of
launching independent of the ontological status and stable causal dis-
positions of the interacting entities—and the overall behavior of the
infant, which includes inferences based on that status.

Effects of the Entity in the Situational Agent Role

Other experiments investigate the interactions between infants’ causal
inferences and the identity of the object in the situational agent role. The
experiments present infants with events that are ambiguous with respect
to the spatio-temporal parameters of Michottian perceptual causality and
explore the causal inferences infants make.

Recall the Muentner studies described above (Figure 6.2). Eight-
month-old infants apparently did not infer that a train caused the state
change of a box (either a color change or a collapse). Muentner repeated
these studies, replacing the train with a hand. Consider the collapsing box
version. Infants were first familiarized to a solid box. In habituation trials,
the curtain was lowered to reveal the box half hidden behind a screen. A
hand then entered from the side of the stage opposite to the box and
went behind the screen, after which the box collapsed into pieces. This
event was repeated until infants habituated. On test trials, the screen was
removed and the hand approached the box, either making contact with it
before it collapsed or stopping just short of it before it collapsed. Unlike
in the train case, where infants did not look longer at gap test trails than
contact test trials, now infants recovered interest in the gap events. The
same pattern of results was observed in the color/sound state change
events.

This pattern of results is consistent with two interpretations: First,
unlike the train events described above, when object A is a hand—a
paradigmatic dispositional agent—infants see the state change events as
causal and expect contact for the effect to occur. Or, second, infants saw
the hand as engaged in an intentional action (reaching for the box) and
recovered interest when the hand did not attain its apparent goal (see
chapter 5). Muentner ruled out the second interpretation with the
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following experiment. Infants were habituated as before and were shown
identical test trials, except on these test trials the box did not break into
pieces. If infants merely expected the hand to reach its goal, they should
have shown the same pattern of looking in this experiment as in the
original one—longer looking to the gap events. However, if their sen-
sitivity to contact derived from a causal analysis, their looking-time
pattern should reverse: attention should be drawn when the hand con-
tacts the box and it does not fall apart, whereas the gap event (no contact/
no effect) is not surprising at all. The looking-time pattern did reverse.
Infants looked longer when the hand made contact with the box and it
did not collapse than they did when the hand failed to contact the box
and there was no state change.

This pattern of results shows that infants are sensitive to the stable
dispositional properties of agents (in this case, the hand as a likely cause of
effects) in their causal inferences, and that they expect contact for state
changes as well as motion events. When the situational agent in a possible
causal interaction has the stable dispositional properties of an agent (in this
case, if it is a hand), the event is interpreted causally—otherwise (in this
case, if it is a train) not. These results increase our confidence in attrib-
uting causal representations to infants, but undermine Michotte’s claims
that causal representations derive solely from the schema of causal per-
ception of launching events. Causal inferences are not restricted to
motion events, as they encompass reasoning about state changes, and they
are penetrable by representations of the entities in the events

Sabina Pauen and Brigitte Trauble (2007) provided convergent data
for the latter conclusion. The Michottian causal interaction at issue is
entraining, not launching. In a paradigmatic entraining event a stationary
object is contacted by a moving one, and then they move together,
maintaining contact. In Pauen and Trauble’s experiment, the event was
ambiguous. The screen was lowered, revealing two distinct objects
already moving together. The participants were 7-month-old infants
who watched this ambiguous motion event, in which a ball attached to a
furry animal-like tail bounced and rolled erratically around a small stage.
Since both the ball and the tail always moved together, situational causal
roles could not be assigned based on spatio-temporal cues. Then, the ball
and the tail were separated, and lay stationary in separate parts of the
stage. Although the infants’ exposure to the two objects (ball and tail)
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moving was equivalent, the looking behavior to the stationary objects
was asymmetrical. Infants looked preferentially at the tail, as if they
expected the tail, but not the ball, to continue to move following sep-
aration. Pauen and Trauble’s data suggest that when two entities moved
together, 7-month-old infants parsed the spatio-temporally ambiguous
motion event into a causal interaction based on cues to dispositional
agency. The infants assigned the furry tail (a more plausible agent in the
enduring, dispositional sense) to the situational agent role, just as adults
do with the same stimuli.

These recent results confirm Alan Leslie’s (1984) conclusions from his
earlier study of causal agency in an entraining event. In that experiment,
7-month-old infants watched a film of a hand either (1) move in from
off-screen and stop near a stationary doll (reach) or (2) start near the doll,
and then move off the screen together with the doll (pick-up). In
addition, each film involved either contact (in which the hand grasped
the doll) or no contact. Leslie observed that the infants who are habit-
uated to a pick-up event recover interest on the test trials if the contact
relation changed (in either direction, from contact to no contact or vice-
versa). But infants do not react to a contact change in a reach event.
When a dispositionally inert object (a stick) is the candidate situational
agent, infants do not recover interest to a contact change for either pick-
up or reach events. Taken together, these results suggest that 7-month-
olds see an event in which a hand and an inanimate object move together
as a causal interaction, and they attend to contact between the hand and
the object; an event which two inanimate objects move together
equivalently is not perceived as an interaction for which contact/no
contact is relevant (i.e., is not perceived as causal).

Remember that, according to the logic of the Oakes and Cohen and
the Leslie experiments, 6 months is the age at which we have good
evidence that infants perceive causality in Michottian launching events.
Pauen’s and Leslie’s experiments suggest that infants also perceive cau-
sality in more complex Michottian entraining events. But contrary to
Michotte’s view, the infant’s perceptual analysis is constrained by
representations of the dispositional agency of the participants in the
events. This is so by 7 months of age—just about the same age we have
evidence infants are imputing causality at all, even in straightforward
causal perception studies.
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Joint Effects of the Entities in the Situational Agentive and
Patient Roles

In a series of studies, Rebecca Saxe and I (Saxe, Tzelnic, & Carey, 2007;
Saxe, Tenenbuam, & Carey, 2005) have shown that the young infant’s
causal inferences are impressively sophisticated, simultaneously integrat-
ing representations of the stable causal dispositions of entities in the sit-
uational agentive and patient roles. As in Ball’s studies, in Saxe’s studies
the infant never sees the interaction between the potential situational
agents and patients, and in some of the studies, the infant must infer the
presence/nature of a situational agent from the fact that the moving
entity is a dispositionally inert object. In these latter studies, during
habituation not only do infants not see the causal interaction, they don’t
see the potential situational agent at all.

I introduce Saxe’s studies with the simplest one—one in which the
child need not infer the identity or nature of the situational agent. Nine-
month-old infants were first familiarized to two beanbags lying motionless
on the stage floor, thus providing evidence that these are inert entities.
Then, during habituation, on each trial a bean bag came flying out from
behind one of two small screens on the side of the stage (Figure 6.3),
landing in the middle of the stage and remaining inert until the infant
looked away. The order of emergence from each of the two sides was
unpredictable; on half of the trials a beanbag emerged from behind the left
screen and on half of the trials from behind the right screen. After habit-
uation, on each test trial the screens were lowered, revealing a hand behind
one of them and a toy train engine behind the other. On test trials the
screens were then raised again, and a beanbag came flying out from behind
one of the screens. Infants recovered interest, relative to the last habituation
trial, only if the beanbag emerged from behind the screen where the train
was; they maintained their habituated looking when it emerged from
behind the screen where there was a hand (Saxe et al., 2007).

Apparently, infants reason about the source of motion of the
beanbag, and consider hands to be better candidates for situational agents
than toy trains. This result does not tell us what it is about a hand that
makes it a good situational agent. Is it that infants have represented hands,
per se, as throwers of small objects like beanbags? Or are hands repre-
sented as entities capable of self-generated motion, and any self-moving

234 The Origin of Concepts



entity is a candidate situational agent? Or is it that hands have the
mechanical properties of potential throwers and the train does not? These
possibilities are not mutually exclusive, of course; infants’ causal reasoning
could possible integrate information about dispositional agency in gen-
eral, about particular agents infants have had experience with, and about
mechanical and functional affordances of objects. That is, their inferences
could be central and nonmodular in the extreme.

We have just begun the studies that will allow us to tease apart these
possibilities. In one study, infants were familiarized to a small brown furry
puppet, with eyes and spindly legs, but no arms (Figure 6.4). Very thin
black strings, invisible against the black backdrop, supported the puppet
as it gently hopped around the stage, apparently moving by itself.
Infants were then habituated, as before, to beanbags flying out from

A

B

C

Figure 6.3. Schematic design from Saxe et al., 2007. Top panel, familiarization
display. Next two panels: habituation events—a single bean bag emerges in flight
from behind either the left screen or the right screen, unpredictable. During test trials,
a hand is revealed behind one of the screen and a train behind the other, the screen are
replaced and the bean bag emerges in flight from behind the screen with the hand
(expected event) or the train (unexpected event). Saxe, R., Tzelnic, T., & Carey, S.
(2007). Knowing who-dunnit: Infants identify the causal agent in an unseen causal
interaction. Developmental Psychology, 43(1), 149–158. Redrawn with permission from
American Psychological Association.
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behind the each of the two screens. Now, when the screens were lowered,
the puppet (now stationary) was revealed behind one and the toy train
behind the other. The issue here is whether infants would accept
the puppet as a candidate agent of a beanbag’s motion, just as they had the
hand. The answer is yes. Infants again generalized habituation to
those test trials on which a beanbag flew out from the screen where the
puppet had been revealed, whereas they recovered interest when the
beanbag flew out from behind the screen where the train had been
revealed.

Apparently what it is about hands that makes them good candidate
situational agents extends to entities the infants have never seen throw
anything before—entities that do not have throwing limbs (the pup-
pet). Of course, we do not yet know what it was about the puppet that
made it a good dispositional agent—its morphological properties (eyes,
legs, fur) or the fact that it had been shown to move by itself. Ongoing
studies address this issue. Nonetheless, the completed studies converge
with those cited above, demonstrating that infants’ representations of

Figure 6.4. Self-moving agent from Saxe et al., 2005, 2007. Reprinted from
Saxe, R., Tenenbaum, J., and Carey, S. (2005). Secret agents: 10 and 12-month-
olds infer an unseen cause of the motion of an inanimate object. Psychological Science,
16(12), 995–1001, with permission from Blackwell Publishers. Saxe, R., Tzelnic, T.,
& Carey, S. (2007).
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particular motion events integrate information about the stable dispo-
sitional properties of candidate situational agents. Further studies that
build on these results demonstrate just how complex the infants’ rea-
soning is.

Saxe (Saxe at al., 2005; 2007) was the first to show that infants infer a
situational agent, even if they have seen neither the causal interaction nor
the candidate agents themselves prior to the test trials. One experiment is
similar to the beanbag-throwing study diagrammed in Figure 6.3. That
study showed babies potential agents and asked whether they formed
expectations about which beanbag would come flying out from behind
the screen. The study under consideration here never showed babies the
candidate agents, and asked instead whether their representations of the
event led them to posit the existence of a hand.

Consider the following situation: Infants are again familiarized with
an inert beanbag. The curtains open on a stage with two boxes, one on
each side of the stage. The beanbag comes flying out of one box,
landing on a white platform between the two boxes. The curtain closes,
opens again to reveal the two boxes, and again the beanbag comes
flying out of the same box, landing on the white platform. There is only
one beanbag in this study, and it always emerges from the same box.
Infants are habituated to this event. The question is, do they reason
about the (invisible) source of the beanbag’s motion? In a series of
experiments, we have shown that 7- and 10-month-old infants do
indeed do so. On test trials, the box again flies out of the same box as
during habituation, and then the fronts of the boxes are lowered,
revealing a hand in one of them and a brightly colored block in the
other. Looking times are measured to these outcomes. At issue is
whether infants look longer at the outcome in which the block is
revealed in the box from which the beanbag had emerged and the hand
is revealed in the other box, relative to the reverse pattern. They do. If
infants have had previous evidence that the beanbag is an inert object,
they infer a hidden causal agent (e.g., a human hand) as the source of the
motion (inside the box) and are surprised if an inert object is revealed in
the source position instead (Saxe et al., 2007).

Note that information about the ontological categories of the entities
is actually playing two different, and critical, roles in these inferences.
First, the infants categorize the moving entity (the beanbag) as inert, and
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therefore seek an external causal explanation of the beanbag’s motion.
Second, infants categorize the potential causal agents, and judge that a
human hand is more likely causal agent than is an inert toy train or a
block.

The assumption that if the moving object is categorized as self-
moving, then infants do not seek an external cause was tested in a final
experiment—an experiment that also confirmed that if infants categorize
a moving entity as dispositionally inert, they infer a hidden cause of its
motion (Saxe, Tenenbaum, & Carey, 2005). The set up is diagrammed in
Figure 6.5. In some conditions, as in the above studies, 10- and 12-
month-old infants were familiarized to an inert beanbag. Then, during
habituation, the curtain was lowered, revealing a barrier in middle of the
stage. The bean bag came flying in from one side of the stage (say, the
left), sailed over the barrier, landing on the other side (Figure 6.5a). On
different trials, the barriers were of different heights and colors; the
beanbag always cleared them and landed on the other side of the stage.
You may have noticed that this is a real-live version of the Gergeley &
Csibra (2006) event described in chapter 5, minus a goal object reached
by the flying one. Gergeley and Csibra were interested in whether infants
would see the motion of the flying object as goal-directed. Here, our
interest is whether they see it as caused by a situational agent, and what
entities they might accept as situational agents. To explore this, after
habituation, a hand emerged either from the side of the curtain from
which the beanbag had been emerging (the left; Figure 6.5b), or from the
opposite side of the stage (the right; Figure 6.5c). In three different
replications of this design, infants looked longer when the hand emerged
from the side of the stage from which the beanbag had not come.

The natural interpretation of this finding is that infants inferred a
situational agent as the cause of the beanbag’s motion, and that a hand is a
good candidate for this agent. Two further studies bolstered this inter-
pretation, while ruling out obvious alternative interpretations of the
results. One alternative is that infants merely represent these events as
motion from the left to the right, and so motion from right to left was
novel. To rule this interpretation out, the experiment was rerun, but the
entity that emerged from the left or from the right during test trials was
our solid wooden toy train, not a hand (Figure 6.6d). Infants did not
differentiate these test trials. Thus, their looking patterns in the hand
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studies are not determined by a low-level expectation that all motion will
be from a single side of the stage. Also, these results confirm all the others
reviewed in this chapter that hands are good candidate situational agents
and dispositionally inert objects such as small wooden trains are not.

A

B

C

D

Figure 6.5. Schematic design from Saxe et al., 2005. After familiarization with an
inert beanbag on stage floor, the habituation trials involved a beanbag flying in from
offstage, clearing a wall, and landing on the other side of the wall (top panel). The side
of emergence is constant during the habituation trials (e.g., always from the left in the
condition diagrammed here). In test, the beanbag sails over the wall as before, fol-
lowed by a hand emerging either from the same side from which the beanbag
emerged (panel b) or the opposite side (panel c). In another condition of this
experiment, the hand is replaced by a train during test trials, the train emerging either
from the same side from which the beanbag emerged, or the different side (panel d).
Reprinted from Saxe, R., Tenenbaum, J., and Carey, S. (2005). Secret agents: 10 and
12-month-olds infer an unseen cause of the motion of an inanimate object.
Psychological Science, 16(12), 995–1001, with permission from Blackwell Publishers.
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The final condition established that the representation of the figure,
the beanbag, as dispositionally inert is playing a crucial role in infants’
representations of these events—that is, that dispositional representations
allow infants to represent it as a situational patient or a situational agent.
In this last condition, infants were familiarized to the brown googly-eyed,
spindly-legged puppet (Figure 6.4) moving around on the stage, rather
than to a beanbag. During the habituation events, it was the puppet that
came flying from off-stage over the barrier. The test trials were as before
—after habituation, a hand emerged from the side from which the
puppet had come or from the other side. In this case, infants looked
reliably longer at the appearance of a hand during test trials than in the
beanbag conditions, and they did not differentiate the trials as a function
of which side the hand came from. Apparently, when the moving figure
is itself categorized as a dispositional agent, infants do not infer a situa-
tional agent as the cause of its motion.

The overall message of these studies is that 6- to 7-month-old infants
already form expectations with causal content that cannot be explained
by the output of Michotte’s module for perceptual causality. Their
inferences rely on the categorization of the entities in the situational agent
and patient roles in terms of enduring causal dispositional status. These
results are not incompatible with the existence of a perceptual module in
early infancy. Richly integrated causal inferences may exist alongside an
encapsulated module. But clearly, not all of an infant’s earliest causal
representations are modular. Thus, these results weigh clearly against
Michotte’s contention that the perceptual module is the single original
source of all true causal concepts, while at the same time bolster our
confidence in attributing representations of cause to young infants.

Are We Justified in Attributing Representations with the
Content Cause to Infants?

Below, I consider how the data summarized to this point bear on the
innateness of the concept cause, as well as on Michotte’s particular
hypothesis concerning the nature of innate causal representations. But
before turning to these considerations, let us first step back and consider
whether the rich interpretation of these experiments in terms of causal
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representations by 6 months of age is justified. The experiments reported
above have been taken to show that by 6 months of age, infants have a
concept cause. The dialectic around this claim should now be familiar, for
we have seen it before concerning representations of the concepts object
and agent.Not astonishingly, developmental psychologists with empiricist
leanings prefer a leaner interpretation of the results reviewed here. Might
they be right? Might infants’ behavior be understood entirely in terms of
representations of contingencies among events in the world specified
entirely over a sensory or perceptual vocabulary?

None of these experiments provides absolute, knock-down evidence
that preverbal infants interpret Michotte launching events causally. Just as
infants may have learned the contingent relations among the spatio-
temporal features of launching, so too they may have learned restrictions
on those contingencies stated over perceptual features of the entities
involved (and hence be sensitive to parameters correlated with disposi-
tional agency), and they may have learned generalizations concerning the
relative sizes of objects and relative extents of motions. The Leslie and
Keeble study (1987) is more difficult to reinterpret in this way, but one
may imagine an empiricist response. An empiricist might argue that
infants bring previous learning of the spatio-temporal contingencies in
launching events to the representation of the events that satisfy the
schema of Michottian launching, but have no relevant experience with
events in which there is a temporal delay between object A’s contacting
object B and object B’s subsequent motion. Exactly why this would lead
to an interest in the reversal of the events only in the former case is not
clear, however. Also, Leslie and Keeble did not find differential rates of
habituation to the two classes of events.

Although the empiricist has responses to the rich interpretations that
credit infants with causal representations in the above studies, I doubt
them, for two reasons. First, attributing representations of the schema the
motion of object A causes object B to move to the infant is the most parsi-
monious account of how the young infant learns the generalizations
revealed in the above studies. If causal notions organize infants’ repre-
sentations of launching events, we can make sense of their distinguishing
agents and patients, of their learning generalizations of what can be agents
and patients, and of their learning properties of motion contingent on
which is which. As always, those who believe that the child is merely
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gathering reliable statistics about the events unfolding around him owes
an account of how the child constrains which properties to notice, which
correlations to store.

Second, and related, attributing the concept cause to infants by 6

months of age makes sense of a very striking finding that emerges from
the above review. As early in development (i.e., 6 months) as there is
evidence that infants perceive Michotte launching, expulsion, and
entraining events in causal terms (i.e., distinguish the situational agent and
patient roles, see launching events as categorically distinct from both
spatial gap and temporal gap events), they make complex causal infer-
ences integrating representations of dispositional agency into their causal
interpretation of specific events. A few seconds’ experience with our
brown googly-eyed puppet moving on its own is all that is required for
the child to interpret it as the source of its own motion and as the possible
source of the motion of a beanbag. The child has seen no interactions
between this entity and others, and so can have learned no contingencies
between its motion and that of others. The relevant generalizations (and
thus learned contingencies) are stated over an abstract vocabulary, and the
learning looks anything but piecemeal. This is what would be expected if
representations of cause are organizing the child’s representation of these
events and hence of their learning about the entities that participate in
them.

Are Representations of Cause Innate?

Suppose we accept that by 6months of age infants represent causality. The
fact that there is no evidence for representations of causality before this age
cannot be taken as evidence, in itself, that there is no innate concept
cause. Those who believe that the concept can be built from noncausal
sensori-motor primitives need to specify what those primitives might be
and what learning process operative in the first 6 months of life might
yield representations of cause from them. No such account is on offer.

Cohen and Chaput (2002) present a connectionist model that purports
to solve this problem. Their interesting model learns the spatio-temporal
factors that predict when motion of one entity is followed by motion of
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another. However, this prediction is still formulated over spatio-temporal
vocabulary—there is no representation with the content cause.

Evaluating Michotte’s Hypothesis: The Origin of Causal
Representations

The studies reviewed above provide very strong evidence that by 6 to 7

months of age, infants perceive and interpret launching events, entraining
events, and expulsion events causally. Learnability considerations favor the
conclusion that some mechanism for computing causality from perceptual
input is innate. Nonetheless, the evidence is quite strong against
Michotte’s hypothesis concerning the nature of that mechanism. That is,
the data reviewed in this chapter militate against Michottian perceptual
analyzers as the source of the human capacity for causal representations. If
this were so, there should be a point in development at which we could
find evidence for causal perception in fully visible launching or entraining
events (as in the Leslie and Keeble studies,1987, or the Oakes and Cohen
studies, 1990), and no evidence for causal inference, especially inferences
integrating mechanical causality with other types of causal representations.
No such point in development has been discovered yet; rather, just the
opposite is true. As soon as there is any evidence for causal representations,
infants integrate their representations of the spatio-temporal parameters of
events with information about the ontological status and stable causal
dispositions of the interacting entities. Infants’ causal representations of
motion events are exquisitely sensitive to whether a candidate situational
agent is a hand, a puppet with eyes and legs, a toy train, or a block. The
fact that state changes of a box are interpreted as caused by a hand making
contact with it, but not a moving train doing so, provides additional
evidence that some of the ultimate sources of causal representations are
outside of Michotte’s perceptual module, either in addition to it or in
conjunction with it.

Furthermore, the existing literature does not provide any evidence
for Michotte’s claim that the perceptual module itself is innate. By the
time experimentalists can find robust evidence of causal perception,
infants have already had 6 months of experience observing causal inter-
actions, presumably including launching, entraining, and expulsion.
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More important, we have shown that other causal information (about the
phenomenal and ontological aspects of objects) is integrated with
representations of mechanical causality as young as we can find evidence
that mechanical causality is itself represented. It is therefore possible that
infants learn to recognize launching, entraining, and expulsion as causal,
informed by data interpreted through the lens of this “other” causal
information—for example, from the infants’ own experience of effort
(along the lines of the de Biran hypothesis), and/or from the analysis of
conditional probabilities (along the lines of Bayes-nets causal learning
proposals). To belabor my point here, the Michottian schemata might be
learned, even if the capacity to represent causality per se is innate and
plays a role in learning them.

Which other sources of causal representations that might contribute
to construction of Michottian launching causality? That hands are pri-
vileged as candidate situational agents provides some support for Maine
de Biran’s hypothesis that the ontogentic and conceptual core of causal
representations is the schema of an agent exerting effort and affecting the
world. Just as infants are influenced by knowledge of their own inten-
tional actions in representing others’ actions as intentional (see chapter 4),
so too might they be influenced by knowledge of their own causal
interventions on the world in providing causal analyses of events not
involving themselves. And they may thus project their own sense of
internally generated effort onto their representations of the capacity of
situational agents to effect motion and state changes. If this hypothesis has
merit, we might expect to find that, just as infants interpret state changes
causally if the situational agent is a hand more easily than if the situational
agent is a toy train, so too 4- and 5-month-old infants may succeed in
Ball’s paradigm exploring launching causality more easily if the situational
agent is a hand than if it is a ball or a toy train.

Still, I do not think that the infant’s own sense of causal interventions
on the world can be the sole source of causal representations, for reasons
analogous to those that convince me that the infant’s sense of its own
intentionality cannot be the sole source of the capacity for intentional
attributions. The infant may well represent his or her own effort, and his
or her own goals with respect to changing the environment, but
representing effort, goals, and means is not the same as representing
causality. I could try all I like to lift my car with my bare hands,
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experiencing great effort. To know whether my efforts have actually had
an effect on the world, I need some other way of representing causality—
either Michotte’s (my action resulted in a perception of launching or
entraining) or an analysis of the probabilities of outcomes conditional
upon my actions, as in a Bayes-net representation.

Carolyn Rovee-Collier (e.g., Rovee & Rovee, 1969) has demon-
strated that 2-month-olds can learn to kick their legs in order to make a
mobile move and that 6-months can learn to press a lever to make a train
move (Hartshorn & Rovee-Collier, 1997). In the mobile experiments,
the infants’ legs in fact are connected to the mobile by a ribbon, but it is
unlikely that the child is aware of that, for after the child has learned the
behavior, the child kicks in the presence of the mobile even if the ribbon
is not tied to her leg. This is, of course, standard operant conditioning,
and Rovee-Collier was not primarily interested in causal representations;
rather, she used this behavior to explore infants’ memory for the mobile
or the train. However, many have argued that operant conditioning
implicates causal representations (e.g., Dickinson & Shanks, 1995;
Gallistel, 1990). These authors analyze operant condition as a learning
mechanism that computes causality from patterns of conditional proba-
bilities, a special case of the learning that establishes Bayes-nets causal
representations. It would be very important to see whether infants
younger than 6 months of age can make causal attributions from
observing the patterns of conditional probabilities among events not
involving themselves. If so, this capacity could underlie both the
development of causal perception (coming to see launching, entraining,
and expulsion events as causal) and correctly interpreting which of one’s
own actions are causally effective.

This third mechanism (computing causality from patterns of con-
ditional probabilities) is a paradigm domain general central process. If it is
indeed the root of human causal representations, then this case study
provides an example of conceptual representations with innate support
that are not limited to a domain of core cognition. It is also possible
that all three mechanisms for identifying causal interactions in the world
exist and are initially independent of each other, but have begun to be
integrated already by 6 or 7 months of age. However, there is another
possibility not anticipated in Michotte’s debates with Maine de Biran
over the ultimate source of human causal representations. As the
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rationalists insisted, representations with the content cause may be innate,
but they may be part of a central conceptual system that integrates
information from all three sources of evidence (contingency, direct per-
ception of mechanical causality, sense of one’s own causal effort and
efficacy in the world) from the outset. Given the rich interconnections
between infants’ representations of the sources of motion of inert objects
and their representations of dispositional causal agents documented in the
present studies, this alternative picture is very much alive.

Conclusions

This chapter completes my comments on the initial representational
systems that ground conceptual development. Core cognition is one
source of representations with innate conceptual content, and chapters
2 to 5 provided evidence for several distinct core domains and charac-
terized the nature of core cognition. But core cognition need not be the
only source of representations with innate conceptual content. Core
cognition representations are input to central conceptual processes, and
there is no reason there may not be central representational systems with
innate conceptual content that is distinct from that of core cognition
systems. The example considered here is the capacity to represent cause,
and there may well be others.

I turn now to the second half of my account of the origin of con-
cepts. The chapters to come describe discontinuities in conceptual
development and sketch an uniquely human learning mechanism that
underlies the human capacity to create new representational resources—
that is, to create concepts not available in or definable in terms of
antecedent representations.
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7
Language and Core Cognition

Noam Chomsky made nativism respectable in the face of the dominant
empiricist behaviorism of the first half of the last century. His concern was
language acquisition, not conceptual development. Many modern cog-
nitive scientists agree with Chomsky that domain-specific learning
devices support the mastery of natural language, although there is much
disagreement on the details of what aspects of language are innate and
what kinds of domain-specific acquisition devices exist (e.g., Chomsky,
1965; Pinker, 1984, 1989; Spelke & Newport, 1998; Wexler &
Culicover, 1983; Gleitman, Cassidy, Nappa, Papafragou, & Trueswell,
2005). I will assume, with these authors, that human evolution bequeathed
us with innate knowledge of language, which we can imagine takes the
form of a language acquisition device (LAD). The LAD guides the learning
of natural language syntax, morphology, and phonology.

Although an account of the acquisition of syntax, morphology, and
phonology is beyond the scope of this book, the lexicon stands right in
the middle of any theory of conceptual development. Words express
concepts, and most of the concepts I have been concerned with are of the
grain of single lexical items. How is it that language comes to be inte-
grated with nonlinguistic representations, such that it is a vehicle for
expressing thought? Must prelinguistic thought be transformed in any
ways for this to happen?

These questions are at the heart of the scientific study of the relations
between language and thought. For most cognitive scientists, this topic
brings to mind the Whorfian hypothesis that languages differ from each
other in the representational resources they make available or make
salient. Recent years have seen a resurgence of interest in Whorfian
claims (see Bowerman & Levinson, 2001; Gentner & Goldin-Meadow,
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2003, for recent reviews), and I shall not attempt to review this bur-
geoning literature. Rather, I focus on an issue that is logically prior to the
question of whether language learning leads speakers of different lan-
guages to think differently about the world. The issue that concerns me
here is whether language learning (any language) leads infants to think
differently about the world from how they thought about it before
language learning. Is language learning itself a source of concepts? Does
language learning require building representational resources that trans-
cend core cognition, and if so, in what ways and how is this possible?
These questions are logically prior to Whorfian hypotheses for a simple
reason. If language learning cannot transform thought, as continuity
theorists would hold (see Fodor, 1975; Pinker, 1994; Macnamara, 1982;
1986), then it would be impossible for distinct languages to express
qualitatively different representational systems.

My discussion of these issues unfolds as follows: I distinguish the
strong linguistic continuity hypothesis that emerges from the language-
acquisition literature with two broad ways language learning might
affect thought, which I call “weak linguistic influence” and “Quinian
linguistic determinism” respectively. At issue is the continuity thesis
mentioned in chapter 1: the thesis that the resources needed to express all
concepts humans can represent are available throughout development,
even at the beginning. As in all discussions in this book, specific case
studies illustrate what is at stake and how the arguments go. I make no
effort to review how these issues play out in every case in which they have
been examined. The cases discussed here include the representations that
underlie natural language quantifiers, especially the singular/plural dis-
tinction (“is” versus “are,” “a” versus “some,” “-s”), and basic-level sortal
concepts, like dog or table. I review evidence for an influence of language
learning on nonlinguistic representations in each of these cases, and I
conclude with arguments that these particular cases reflect weak linguistic
influences, at most, and not Quinian linguistic determinism.

Strong Continuity: Lexical Learning as a Mapping Problem

Many linguists have articulated a view of lexical development that pre-
supposes strong continuity, at least underlying the aspects of meanings of
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lexical items that contribute to their syntactic role (Gleitman et al., 2005;
Grimshaw, 1987; Pinker, 1984, 1989). They suggest:

1. Infants’ representations of the world are articulated in terms of con-
ceptual distinctions that directly map onto syntactic distinctions.

2. LAD includes representations of the semantic and syntactic categories
that underlie all natural languages.

3. LAD includes innate mappings between semantic categories and
linguistic ones.

These principles do not require that all concepts are innate—infants’
representations need not include concepts like mortgage, quark, carburetor,
or persecute. But the concepts that underlie the meanings of the closed-
class vocabulary (bound morphemes, quantifiers, determiners, and so on)
and that underlie contrasts between lexical categories (count versus mass
versus proper nouns, nouns versus adjectives, and so on)—the concepts
that embody the basic ontological commitments made by language—are
innate, as are expectations about how these will be realized in language.

This picture of language acquisition gives rise to theories of lexical
learning called in the language-acquisition literature “semantic boot-
strapping” and “syntactic bootstrapping.” This is confusing nomencla-
ture, for semantic and syntactic bootstrapping differ greatly from the
bootstrapping mechanisms envisioned in the history and philosophy of
science literature. Semantic and syntactic bootstrapping theories seek to
explain how children might solve a killingly difficult mapping problem.
Even if children were endowed with rich innate conceptual knowledge,
and rich knowledge of the possible linguistic categories, they still have to
learn their particular language—which syntactic, semantic, and mor-
phological devices it has and how exactly they are expressed.

To get a feel for how semantic bootstrapping mechanisms works,
suppose the child knew innately that labels for kinds of objects were
count nouns (an innate mapping rule between a conceptual category,
object kind, and a linguistic one, count noun.) Then as children figure
out that “dog,” and “table,” and “man” refer to kinds of objects, they
would infer that they were count nouns, and this would help them learn
how the syntactic reflections of count nouns represented in LAD are
expressed in their language (number marking, determiners, adjectives,
branching structures, verb agreement, and so on). Once that is learned,
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hearing “a great idea,” would be sufficient to categorize “idea” as a count
noun, which would then constrain the meanings children assigned to this
word (i.e., that it is an individuated entity). This latter inference is an
example of syntactic bootstrapping. Once some of the syntax of the
language has been mastered, the innate (or learned) mapping rules enable
the child to use syntactic context as a source of evidence for word
meaning. Gleitman and her colleagues (2005) have shown how syntactic
bootstrapping plays an important role especially in the learning of verbs.
For example, hearing a verb in a structure with three arguments rules out
its having a meaning like sleep, which must be realized as an intransitive
verb.

The evidence that children make use of both syntactic and semantic
bootstrapping is overwhelming. The field divides upon whether the
mapping rules are innate or learned, but nobody can deny that knowl-
edge of semantics/syntax correlations would constrain further learning of
both syntactic and lexical information. For present purposes, it is
important to recognize that what linguistics call semantic and semantic
“bootstrapping” is actually embedded in a theory strongly committed to
continuity. The learning processes support mappings between anteced-
ently available conceptual and linguistic categories.

Language as the Source of Concepts: Quinian Linguisitic
Determinism

Continuity theorists such as Jerry Fodor (1975), John Macnamara (1982),
and Steven Pinker (1984, 1994) deny that language learning shapes our
concepts in any interesting ways, let alone that language learning is part of
a process that creates new concepts that embody new ontological com-
mitments. These writers would certainly allow weaker effects of language
on thought during cognitive development. The language spoken might
select among different possible conceptual distinctions to mark explicitly
(and even obligatorily), and learning language might make some ante-
cedently represented concepts more salient to and more automatically
deployed by the child.1 Such effects are not inconsistent with conceptual
and linguistic continuity throughout the life span. Call these effects
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“weak linguistic influence,” to contrast them to Quinian linguistic
determinism.

The continuity thesis stands in stark contrast to Quine’s doctrine of
strong linguistic determinism (see chapter 2). Quine (1960, 1969, 1977)
claimed that there are episodes of conceptual development in which:

1. Infants’ representations are radically different from those of their
elders.

2. Adult representational resources are a cultural construction, expressed
in natural languages.

3. Adult representational resources are acquired by each child through
bootstrapping processes in the course of mastering natural language.

As you will recall from chapter 2, Quine, along with the British
empiricists, Piaget, and many modern-day psychologists, held that
infants’ representations of the world are formulated in terms of perceptual
primitives. Quine, like Piaget, pointed out that such representations differ
qualitatively from those that natural languages express, especially in term
of their quantitative capabilities. Quine’s view of the depth of
the difference between a representational system formulated over an
innate perceptual quality space and one formulated over concepts with
the quantificational structure of natural languages was emphasized when
he insisted that commonsense ontology is a cultural construction, just as
the concepts that articulate scientific theories are cultural constructions:
“Theory may be deliberate, as in a chapter on chemistry, or it may be
second nature, as in the immemorial doctrine of ordinary enduring
middle-sized objects” (1960, p. 11). And “analyze theory-building how
we will, we must all start in the middle. Our conceptual firsts are middle-
sized, middle-distanced objects, and our introduction to them and to
everything comes midway in the cultural evolution of the race” (1960,
pp. 4–5).

Chapter 2 explored Quine’s claims, concluding that they fail on
premise number 1. Infants’ representations are not formulated over a
perceptual or sensori-motor quality space (only), and thus are not radi-
cally different from those of their elders in the ways Quine envisioned.
I bring up Quine’s view again because of his view of linguistic deter-
minism. Quine hypothesized that the processes through which infants
create new representational resources crucially implicate language

Language and Core Cognition 251



learning. Quine saw the child’s mastery of the linguistic devices of noun
quantification—the machinery by which natural languages manage
divided reference—as the process through which the child’s ontology
comes to match his or her elders’. That is, the child works out meanings
of quantifiers, determiners, the “is” of numerical identity, the count/
mass distinction, the common noun/proper noun distinction, and so
forth—by learning how these linguistic devices are interrelated and used,
and in so doing, acquires the commonsense ontology these devices
express. Quine appealed to bootstrapping metaphors in describing this
process:

The contextual learning of these various particles goes on
simultaneously, we may suppose, so that they are gradually adjusted
to one another and a coherent pattern of usage is evolved matching
that of one’s elders. This is a major step in acquiring the conceptual
scheme we all know so well. For it is on achieving this step, and
only then, that there can be any general talk of objects as such.
(1969, pp. 9–10)

The child scrambles up an intellectual chimney, supporting
himself against each side by pressure against the others. Conceptu-
alization on any considerable scale is inseparable from language, and
our ordinary language of physical things is about as basic as language
gets. (1960, p. 93)

I will have much more to say about bootstrapping processes in
chapters 8 through 11. Quine did not even try to characterize these
learning processes with enough detail that would begin to satisfy a
modern cognitive scientist. But the basic ideas of Quine’s bootstrapping
metaphors are clear enough. The linguistic devices are learned initially,
in part, only with respect to each other (“they are gradually adjusted to
one another” 1969, p. 9). They are not, and cannot be, fully interpreted
in terms of the innate perceptual similarity space, for the latter does not
have the expressive power to represent the is or same of numerical
identity, the dog or bottle that is a kind of individual that divides reference.
It is the pattern of interrelations among the newly learned linguistic
devices that constitutes the sides of the chimney that supports the learner
as he or she simultaneously climbs. When these linguistic devices are fully
learned and stable, the child has achieved a representation of the
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commonsense ontology they express, which reorders and reinterprets the
features of the innate perceptual similarity space.

Chapters 2 through 4 argued against the empiricist (and Quinian)
picture of the initial state, and I will not belabor those arguments. The
child’s initial systems of representation do have the expressive power
to represent the is or same of numerical identity (they distinguish
numerically distinct individual objects from each other). Rather, I
bring up Quine again because of his proposal for how children acquire
the ontological commitments they putatively lack innately. He held that
the route to mastery of those concepts is language learning itself. If this
were right, then language learning would shape the concepts the child
represents, making possible thoughts not representable before. This is
Quine’s picture, which I call “Quinian linguistic determinism.”

While much of the adult conceptual repertoire may be continuous
with the representational resources of infants—that is, continuous with
core cognition, innate central representations, and the representations in
the language acquisition device—Quinian linguistic determinism may
characterize the ontogenetic origin of some concepts. Indeed, chapters 8
through 11 argue that this is so. Possible cases in which language learning
plays a role in the construction of or wide deployment of representational
resources must be examined one by one. Even within the case of the
representations that articulate the quantificational resources of natural
languages (Quine’s own example), there is room for linguistic deter-
minism, and these are the cases I will examine further in the rest of this
chapter. I illustrate how one explores the possibility of linguistic deter-
minism, and how in these cases doing so leads to the discovery of innate
representational resources I had not earlier anticipated and to evidence for
weak linguistic determinism. Chapters 8 through 11 provide examples of
Quinian linguistic determinism.

The concepts that articulate the quantificational semantics of noun
phrases in natural languages go beyond the resources core cognition
described in chapters 2 through 4 in many ways, and here I discuss two of
them. First, natural languages include explicit symbols for quantifiers that
are not represented in the parallel individuation and analog magnitude
quantificational systems. Second, natural languages deploy concepts for
individuals other than spatio-temporally defined objects; they include
sortals like “dog, table,” and “cup.” Initial evidence suggests that
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language learning may play a role in shaping infants’ conceptual devel-
opment in each of these cases. Might these be examples of Quinian
linguistic determininism?

Possible Linguistic Determinism: Case 1—Quantifiers

The quantificational devices of natural language noun phrases go beyond
those implicit in the computations carried out over object-files and
analog magnitude representations. Natural language quantifiers are
explicit symbols (in English, the determiners, the numerals, plural mor-
phemes, “some, many, each, few . . . ,” and so on). In parallel individu-
ation representations the only symbols are those for particular individuals
and, at least implicitly, for the set being represented. The quantificational
force of parallel individuation is carried by computations defined over
those representations of sets of individuals. In analog magnitude repre-
sentations the only symbols are symbols for particular quantities (e.g., the
approximate cardinal value of a set), and the only computations defined
over these representations are arithmetical. There are no concepts in
either of these systems of core cognition with the content some, all, or a.

As we will see below, the first explicit lexical contrasts with quan-
tificational force that children learn in English are singular/plural markers,
such as the contrast between “is a X” and “are some Xs.” Even the
singular/plural distinction is not naturally expressed in terms of the two
core systems discussed in chapter 4.

Consider a representation of sets of 1, 2, and 3 objects that works as
parallel individuation does:

This representation contains explicit symbols for each object, and

implicitly represents the sets by having selected sets of 1, 2, or 3 particular
objects to represent. There are no explicit symbols for each, every, some,
more, a, plural . . . on this figure. Nor does this system of representation
mark the distinction between a single individual, on the one hand, and
multiple individuals, on the other, collapsing across distinctions among

1 object: OBJ
2 objects: OBJ OBJ
3 objects: OBJ OBJ OBJ
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pluralites. And, of course, this system of representation cannot even
implicitly represent pluralities greater than 3. This system does not have
the representational force of set-based quantification.

Now consider a representations of cardinal values of sets that works
as do analog magnitudes:
and so on.

This system of representation contains explicit symbols for cardinal
values of the sets that are implicitly represented through having been
selected by some attentional mechanism. There are no explicit symbols
for each, every, some, more, a, plural, and so on, on this figure, either. And
this system also fails to collapse across distinctions among pluralities,
treating 8 as equivalent to 2, distinct from 1. Rather, this system distin-
guishes any two cardinalities whose ratio exceeds its limit of discrimi-
nation. Thus, this system also fails to have to the representational force of
set-based quantification. Furthermore, in chapter 4we saw that these two
systems of representation are not well integrated with each other in
infancy. Pluralities, in contrast, encompass sets of 2 and 3 as well as sets of
4 or 10, or 100 or more.

Moreover, chapters 3 and 4 reviewed evidence that suggests that at
least sometimes 12- and 14-month-olds do not draw upon the singular/
plural distinction when it would serve them well to do so. Remember
the cracker-choice and the box-reach studies, and the set-size signature of
parallel individuation representations. Infants failed in these tasks with
contrasts of 1 versus 4. These are extremely surprising results. Shown one
cracker placed into one box and four crackers into another box, infants
were at chance in choosing which box to crawl to. All they need to have
done to succeed was to represent 4 as more than 1—as plural compared to
singular, as some rather than one,—but they did not. Similarly, shown four
objects placed into a box, and then allowed to retrieve one, infants did

1 object: _
2 object: __
3 object: ___
4 object: ____
5 object: _____
6 object: ______
7 object: _______
8 object: ________
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not reach back in to retrieve any more. Again, if they had merely
represented 4 as more than 1, as plural, they would have succeeded, but
they did not (Feigenson & Carey, 2005).

We found these results so remarkable that we have tested older
children on the box-reach task. Eighteen-month-olds succeed at 3 versus
1 comparisons, as do 12- and 14-month-olds, but still fail at 4 versus 1
comparisons. And 20-month-olds also fail at 4 versus 1 comparisons.
Shown four objects together on the top of a box, which are then put into
the box through a slit infants can reach but not see through, 20-month-
old English learning infants, as well as younger ones, reach in and retrieve
one. After getting one, they are satisfied. These data are consistent
with the possibility that not only are there no explicit symbols for plural in
the two core cognition systems with numerical content discussed in
chapter 4, neither are there computations that treat all sets greater than 1

as equivalent and different from one.
What is needed, beyond the core cognition systems of analog

magnitudes and parallel individuation, to represent the singular/plural
distinction? Linguists such as Genaro Chierchia (1988) and G. Link (1987)
show how the quantifiers of all languages, as well as the count/mass
distinction, the distinction between nouns in classifier languages and
nouns in languages with the count/mass distinction, and much else, can
be defined over the semi-lattice depicted in Figure 7.1, which creates all
of the possible sets from a domain of atoms or individuals. This structure
makes explicit the contrast between individuals (the bottom line) and all
of the sets composed out of them. One needs explicit symbols with the
content set and individual, plus distributive and collective computations
over those symbols, to capture the meanings of natural language quan-
tifiers, including even the singular/plural distinction. I call this system of
representation “set-based quantification.”

Note that aspects of set-based quantification are implicit in parallel
individuation systems; some attentional process selects a set of individuals
to represent in parallel, and various computations with quantitative import
are licensed over these data structures. But the system of parallel indi-
viduation has no symbols for quantifiers, not even one versus some, and it
has an upper limit of sets of 3. The representations in parallel individuation
are input into set-based quantification, as are the representations of sets
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that are the input to analog magnitudes. The system of set-based quan-
tification defines quantifiers in terms of the structure in Figure 7.1.

Acquiring Explicit Linguistic Symbols for
Quantifiers—Singular and Plural Markers

Since the seminal work of Roger Brown (1973), the father of empirical
studies of language acquisition, we have known that the first linguistic
quantifiers English-learning children produce are the singular determiner
“a,” plural marking of various types (on verbs, on nouns, on pronouns),
“more” and “some.” By the time children have acquired (and properly
analyzed) the linguistic symbols for the singular/plural distinction (“a”
vs. “some,” “is” vs. “are,” “noun-Ø” vs “noun-s,” and so on), they must
represent the conceptual distinction between individuals and sets
of multiple individuals. Brown found that between 24 and 30 months of
age, children begin producing the plural marker on nouns in 90% of
obligatory contexts. Carolyn Mervis and K. Johnson (1991) presented
one case study of a child who began marking nominal plurals at 20
months. Thus, children begin marking plurals in production before their
second birthday. These studies leave open when children come to
comprehend plural marking.

In my laboratory we have recently completed two series of studies,
with two different methodologies, on the earliest comprehension of the
singular/plural distinction. In both methods, we began by using linguistic
contrasts that marked the distinction redundantly: “There are some
blickets” versus “There is a blicket.” Both methods provided convergent

{a, b, c, d} . . . . .

{a, b, d} . . . . .

{c,d} . . . . .

. . . . .

{a,b, c}

{a,b}

a b c d

{a, c}{b , c}

Figure 7.1. The semi-lattice of sets comparised of a domain of individuals. Bottom
line: the individual atoms in the domain. Next: all the sets of 2 atoms that can be
constructed. Next: all the sets of 3 atoms that can be constructed. Top line; set
containing all of the atoms in the domain.
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results: 20-month-old infants, as a group, do not yet command the lin-
guistic distinction and 24-month-old infants do.

One study, by Justin Wood and collaborators (Wood, Kouider, &
Carey, in press), adapted the box-reaching method we have used for
many other purposes. Wood reached under a table and said “I am putting
some balls into the box.” He then brought out the box and said, “There
are some balls in the box,” and pushing the box within the child’s reach,
“Can you get the balls?” Alternatively, he said “I am putting a ball into
the box. There is a ball in the box. Can you get the ball?” Whichever he
said, the box contained only one object. The measure of interest was how
persistently the child searched in the box after retrieving that first object.
We reasoned that if the child reached longer in the plural context, he
must know that plural morphology is used to refer to more than one
individual. Twenty-month-olds did not reach differentially in the two
linguistic contexts whereas 24-month-olds did.

The other study, by Sid Kouider and collaborators (Kouider,
Halberda, Wood, & Carey, 2006), used looking times as a dependent
measure. Two video screens each displayed unfamiliar objects (e.g., a
vacuum tube on one and eight honey dippers on the other). The child
was told either “Look, there is a blicket,” or “Look, there are some
blickets.” If the child comprehends plural morphology, he should look at
the set of eight in the latter case—whatever blickets are, the only screen
that could contain some of them is the one with eight objects. Whereas
there is no absolute right answer in the singular case (the screen with eight
blickets contains a blicket, after all), the pragmatics of the situation might
lead the child to choose the set of 1 as a better example of “a blicket.”
Twenty-four-month-old infants looked at the appropriate screen in each
of the linguistic contexts (i.e., the eight-object screen with plural markers;
the one-object screen with singular markers), 20-month-olds in neither.
Because looking times were being tracked frame by frame, Kouider and
his colleagues could determine which linguistic markers of plurality
guided attention to the relevant display. Infants’ looking to the two arrays
began to diverge immediately after they heard “is” vs. “are,” and con-
tinued to diverge through the quantifiers. Performance was driven by the
contrast between “is a” and “are some.” In both looking time study and
the box search study, 24-month-old toddlers failed if cued by plural noun
morphology alone (“blicket” or “ball” vs. “blickets” or “balls”).
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Notice that in the looking-time study, the plural sets contained eight
objects, whereas in the box-search study, the plural sets contained two
objects. Thus, the toddler’s “are some noun-s” encompasses sets of object
both in the range of parallel individuation and analog magnitudes. These
findings, which reflect comprehension rather than production, converge
with the data on production. We can be confident that English-learning
children begin to appreciate the force of the contrast between “is a noun-Ø”

versus “are some noun-s” between the ages of 20 and 24 months.

Data that Suggest that Language Learning Plays a Role in Creating
the Concepts of Individual and Set of Multiple Individuals

English-learning infants master some of the linguistic markers of the
singular/plural distinction between 20 and 24 months. Furthermore,
infants demonstrate in the nonlinguistic box-search task that they
spontaneously represent a set of four balls as plural, some, or more than one
at 22 months of age, but not at 20 months. This coincidence of the
apparent age of acquisition of the linguistic and nonlinguistic reflections
of the distinction between individuals and sets of multiple individuals
raises the question of the relations between these two developmental
achievements.

David Barner and his colleagues (Barner, Thalwitz, Wood, & Carey,
2007) have recently tackled this question in the case of English-learning
infants. Barner studied 20-, 22-, and 24-month-old toddlers from
monolingual English-speaking households. He asked parents to indicate
whether their infants were yet producing plural morphemes on nouns
(never, sometimes, often) and he also ran each infant in the nonverbal box-
search task. In this task, infants watched as either four balls or a single ball
were placed on top of the box and their attention was drawn to them.
The balls/ball were placed in the box and the child was allowed to reach
in and retrieve one (the other three, in the four-ball condition, having
been surreptitiously removed). That single ball is then taken from the
child and the critical measurement period ensues. Success consists of
more persistent search in the four-ball condition, when there should be
more balls in the box, than in the one-ball condition, when the child has
already removed the only ball seen placed in the box. As mentioned
already, 20-month-olds fail, whereas 22- and 24-month-olds succeed.
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Barner also found that the parents of the 20-month-olds overwhelmingly
said that their infants were never producing plurals, whereas the parents
of the 22- and 24-month-olds said their infants sometimes or often did so.
Furthermore, among the 22- and 24-month olds, who were overall
succeeding on both measures, the two measures were correlated. Success
on the nonverbal box-reach task was carried by those infants whose
parents said they were producing plural markers on nouns.

These studies establish a connection between the two developmental
achievements, but of course they tell us nothing about the nature of that
connection. They do not even speak to the direction of causal influence.
It could be that some maturational or learning process makes the con-
ceptual distinction between individuals and sets become available
between 20 and 22 months of age, and it is this conceptual development
that makes it possible for children to acquire the contrast between “is a
noun” and “are some noun-s.” Alternatively, it could be that language
learning somehow makes that conceptual distinction available (Quinian
linguistic determinism) or more salient (weak linguistic influence).

Influence of Language Learning on Nonlinguistic Thought

Peggy Li and David Barner and colleagues (Li, Ogura, Barners, Yange &
Carey, in press) carried out two parallel studies to explore causal relations
between mastery of plural marking in English, on the one hand, and the
deployment of a nonlinguistic distinction between one and more than one
in the box-search task, on the other hand. They reasoned that if mastery of
explicit plural marking played a role in formulating this distinction, or
making it more salient and thus more likely to be spontaneously deployed
in nonlinguistic contexts, then children learning a language with no plural
marking would succeed on the box-search task later than do English
learners. Classifier languages, like Japanese and Chinese, are such lan-
guages. They do not have singular determiners (no word that means “a”)
and do not mark plurality on nouns or verbs. Barner tested Japanese-
learning children in the box-reach task and found success at the same age
as English learners succeed. Li tested Mandarin-learning children and also
found success at the same age at which English learners succeed. Thus
there is no evidence that learning explicit linguistic representations for
set-based quantification underlies the changes observed in English learners
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between 20 and 22 months on 4 versus 1 comparisons in the box-reach
task.

These data suggest that set-based quantification is part of the
machinery children bring to the task of language learning, either as part of
the language-acquisition device or as part of general representational
capacities. Other considerations also militate against the proposal that
Quinian bootstrapping is necessary to construct the representational
capacity for set-based quantification. Quinian bootstrapping takes time,
and the external linguistic symbols must first be uninterpreted or at least
partially misanalyzed, as they are gradually adjusted to one another. This
case does not appear to fit this bill. As soon as the child begins producing
plural markers, between 20 and 24 months of age, these markers are
correctly analyzed, as shown by the fact that children both produce them
in appropriate contexts and comprehend them. Also, John Macnamara
and his colleagues (Katz, Baker, & Macnamara, 1974) showed that infants
before their 2nd birthday understand the semantic force of the distinction
between “a blicket” and “Blicket,” taking the former to refer to an
individual of a kind, blicket, and the latter to refer to an individual named
“Blicket.” As soon as the singular determiner “a” is learned, it seems to be
interpreted correctly; there is no evidence for a protracted process of
adjusting the meanings of placeholder symbols to each other, creating
representations with semantic force previously unavailable.

There is a second source of evidence that could settle the issue. If
LAD contains set-based quantification, along with innate mapping rules
between the syntactic expression of quantifiers and conceptual repre-
sentations of quantifier meanings, we should be able to find some evi-
dence for those conceptual representations in prelinguistic infants. And if
set-based quantification is part of our general representational abilities, we
might even be able to find evidence for it in nonlinguistic primates.
David Barner and Justin Wood have recently found such evidence
(Barner, Wood, Houser, & Carey, in press; Barner, Thalwitz, Wood,
& Carey, 2008). They have shown that under some circumstances
15-month-old infants and Rhesus macaques spontaneously represent the
distinction between individuals and sets of multiple individuals. The
cases in which infants and monkeys fail to represent sets that exceed the
limits on parallel individuation as “some” or “plural” or “more than 1”

are cases that elicit parallel individuation, cases in which each individual
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moves independently of others and is salient as an individual. Monkeys
and prelinguistic infants display a previously undocumented pattern of
success and failure if the sets of multiple objects move as a rigid whole.
Consider the monkey experiments. Using two different methods (the
food-choice task, and simple habituation), these authors have found
success at discriminating 1 from other set sizes (1 vs. 2, 1 vs. 3, 1 vs. 4, and
1 vs. 5) in the face of failure at 2 versus 3, 2 versus 4, and 2 versus 5. This
pattern of success and failure cannot be accounted for by analog mag-
nitude representations because the ratio of 2 to 5, at which monkeys fail,
is more favorable than the ratio of 1 to 2, at which they succeed. Nor can
it be accounted for by the system of parallel individuation, as monkeys are
failing at 2 versus 3 and 2 versus 4 comparisons (within the range of
parallel individuation) and succeeding at 1 versus 5 comparisons (and 5 is
outside of the range of monkey parallel individuation). Apparently, under
these circumstances, monkeys are representing these arrays as individual or
one versus plural or some, and failing to represent any further information
about quantity in the plural sets. Barner et al. (2008) elicited the same
pattern of response in the box-search task with 15-month-olds, so long as
the sets moved as united wholes.

These data provide strong evidence that acquiring the singular/plural
distinction does not require Quinian bootstrapping, as nonlinguistic
creatures such as 15-month-old infants and Rhesus macaques spontane-
ously deploy it in some special circumstances. It is available to support
learning the meaning of the contrast between “is a noun-Ø” and “are
some noun-s.”

Science is particularly fun when it produces mysterious findings.
Why on earth would monkeys ever treat pluralities as equivalent, not
distinguishing between a set of 2 and a set of 5? We know that they can
distinguish these set sizes with the machinery of analog magnitude
representations. Why would they need a representation with content
some or plural? And what is changing between ages 20 and 22months such
that the contrast between one and more than one becomes spontaneously
deployed in a nonlinguistic task that previously elicited only parallel
individuation? I have no conclusive answers to these questions—they
await further thinking and research—but here is my speculation. The
machinery of set-based quantification supports the distinction between
kinds and individuals; hence the double function of the singular
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determiner: it introduces a single member of kind into the discourse.
Kinds typically have more than one individual in them, and monkeys
may sometimes find it useful to encode the fact that there are multiple
individuals of a kind, while not at that moment caring how many
individuals there are. Relatedly, between 18 and 20 months, children
learning all languages are mastering words for basic-level kinds, words
like “dog” and “cup” and “shoe.” Indeed, morphological development
in the earliest stages of language learning is closely linked to vocabulary
growth. Perhaps what is changing between 20 and 22 months is an
increase in the vocabulary for kinds of objects, and this indirectly makes
set-based quantification more salient. It also supports the learning of
explicit linguistic quantifiers. This hypothesis is testable. If it is right, then
success at the nonlinguistic 1 versus 4 condition in the box-search task
should be correlated with noun vocabulary size in learners of languages
with a count-mass distinction and in learners of classifier languages alike.

Whatever the answers to these mysteries, we have found another
representational ability available to prelinguistic creatures: the capacity for
set-based quantification and the distinction between one and some. These
representational capacities are not made possible by language learning. If
there is any influence of language learning on thought in this case, it is of
the weak variety. It is possible that deploying set-based quantification in
language (merely by using count nouns) makes it more salient, and thus
more likely to be deployed in nonlinguistic contexts. Further research is
needed to establish even this.

Possible Linguistic Determinism: Case 2—Kind Sortals

The literatures on metaphysics and philosophy of language dub concepts
that provide criteria for individuation and numerical identity “sortals.” I
shall use the term “sortal” to refer both to sortal concepts, such as dog, and
the words that express sortal concepts, such as “dog.” Sortals come in
many varieties. I shall use the term “kind sortal” to refer to what are
sometimes called in this literature “substance sortals”—sortals such that if
an individual ceases to fall under that sortal, that individual ceases to
exist.2 Thus, dog is a kind-sortal because, when an individual ceases to be
a dog (i.e., it dies), it ceases to exist. When my dog Domino died, there
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was one fewer entity in the world. Puppy and pet, while sortals, are not
kind-sortals because when an entity ceases to be a puppy or a pet, it does
not go out of existence. Puppy is a stage-sortal; pet a phase-sortal.

The term “kind sortal” has two parts—“kind” and “sortal.” These do
different, but related, work in the full analysis of kind-sortals. A concept is
a sortal by providing criteria for individuation and numerical identity. A
concept is a kind-concept by being inductively deep; kind concepts fall
under the assumptions of psychological essentialism. We assume, in the
case of essentialized kinds, that hidden causal processes explain the
existence of members of that kind, determine their identity throughout
their existence, their surface properties, and their causal powers (S.
Gelman, 2003). Not all kind-concepts are sortals. For example, some
substance terms such as “gold” refer to essentialized kinds, but do not
provide criteria for individuation or numerical identity.

If dog is a kind-sortal, then is a dog is not a property like other
properties that do not provide criteria for individuation and numerical
identity or are inductively shallow, such as red or big or water. We cannot
count the red in the room, the bigness, or the water, but we can count
the dogs in the room. Language marks this distinction in many ways. In
languages with the count/mass distinction, such as English, sortals are
lexicalized as count nouns; count nouns pick out the individuals that
properties are predicated of.

As reviewed in chapter 2, Piaget (and Quine) conjectured that infants
represent no sortals. Contrary to these authors, the concept object char-
acterized in chapters 2 and 3 is a sortal with spatio-temporal criteria for
individuation and numerical identity. Notice that the criteria for indi-
vidual and numerical identity are not explicitly represented—they are not
spelled out in the form of a definition, for example. Rather, they are
implemented in the computations that govern the opening and closing of
object-files, the computations that determine whether a given object is
the same one or a different one from one seen previously. Because of
these computations, object is a sortal.

However, in the adult conceptual system, object is not the only sortal in
terms of which we individuate physical objects. Many intuitions reveal that
specific sortals provide different criteria for individuation and numerical
identity than do object-files. Take dog, for example. The criteria for
individuation and numerical identity for dogs are not spatio-temporal.
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Most simply, a dog ceases to exist when it dies, even though the dog’s
body is spatio-temporally continuous with the resulting corpse. Some
sortals individuate portions of existence even less than a life—for example,
passenger, puppy; a given person may be counted many times when
American Airlines is reporting the number of passengers it flew across the
country in 1999, and when my beloved Labrador retriever Domino was
13, she was the same dog I got at a farm those many years ago, but not the
same puppy, in spite of exquisite spatio-temporal continuity.

The core cognition systems we have described so far leave open the
following possibility concerning the infants’ representational capacities. It
is possible that the only sortal in terms of which material entities are
individuated by young infants is object. Unlike adults, young infants may
not represent kind-sortals for specific objects (dog, person), and may not
distinguish kind-sortals from properties (for infants both redness and
dogness may be properties that can be bound to spatio-temporally
specified objects). This proposal has empirical support. In addition, there
is evidence for a role of language in constructing kind-sortals. Below, I
review the evidence for these claims, concluding by considering whether
the role language learning plays on conceptual development is a case of
weak linguistic influence or Quinian linguistic determinism.

The Relatively Late Emergence of Object Kind-Sortals

Chapter 3 described Fei Xu’s (Xu & Carey, 1996) and Gretchen van de
Walle’s (Van de Walle, Carey, & Prevor, 2000) studies in which infants
under 12months of age failed to draw on kind contrasts among objects in
the service of object individuation.; Shown a yellow rubber duck drawn
from behind and returned behind a screen or inside a box, followed by a
red metallic truck, 10-month-old infants failed to infer that there were
two numerically distinct objects behind the screen or inside the box. I
appealed to these data in my arguments that young infants’ object
representations are built by the object tracking mechanisms of mid-level
vision, for spatio-temporal information dominates property or kind
information in computations of numerical identity in that system as well.

In these studies, we presented the children with contrasts such as
duck/car, book/bottle, cup/ball, and telephone/dog as possible bases for
individuation. In these experiments, then, infants failed to reveal
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knowledge of object kind-sortals. The distinction between an elephant
and a truck, between a ball and a book, and so on, does not suffice for the
child to establish and maintain in memory representations of two
numerically distinct objects in these events. Results from a third paradigm
extended this pattern of results to an individuation problem in which
short-term memory was not required. Consider the display in Figure 7.2.
The duck-shaped part is yellow and rubber; the car-shaped part is red and
metalic. How many objects are there? If your intuition is like that of
other adults in our studies, you will have parsed this display into two
distinct objects, a duck and a car, and you would predict that if the duck’s
head is grasped and lifted, only the duck will rise.

Infants were habituated to this stationary display with a hand perched
above it. Another display was a cup on a shoe. After habituation, the hand
reached down, grasped the top of the top object, and lifted. On one half of
the trials (move apart outcomes), just the top object came up. On the
other half of the trials (move together outcomes), the duck-car or the cup-
shoe rose as a single object, lifted by the top of the duck or the top of the
cup. Twelve-month-olds looked reliably longer at the anomalous move-
together outcomes than at the expected move-apart outcomes, but
10-month-olds failed to allocate attention differentially to the two out-
comes. Like the 10-month-olds in the experiments described above,
infants of this age failed to use the kind distinctions between the duck and
the car or between the cup and the shoe to conclude that two distinct
objects were involved in the display (Xu, Carey, & Welch, 1999). And
again, the method was sensitive to the knowledge sought, for 12-month-
olds succeeded. Further, if provided spatio-temporal evidence that the
duck was a distinct object from the car or the cup from the shoe,
10-month-olds succeeded. That is, if at the outset of each habituation trial,
the top object was moved slightly laterally, relative to the bottom, the 10-
month-olds looked longer in the anomalous move-together test out-
comes.

When adults are asked to describe such events, their descriptions
support the assumption that they encode the duck/car array as a duck on
a car—that is, in terms of the spatial relations between two individuals
specified by kind-sortals. Similarly, adults encode the screen and box
events as a car comes out, then an elephant comes out—that is, in terms
of the successive emergence of two individuals specified by kind-sortals.
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Ten-month-olds, in these experiments, fail to do so, as shown by their
robust failure to posit two objects in any of these three paradigms. These
data suggest that an important aspect of the empiricists’ (and Quine’s and
Piaget’s) description of infants’ minds may be correct. Infants 10 months
and under may not have yet constructed kind-sortals anything like the

Habituation

Apart
(Expected)

Together
(Unexpected)

Figure 7.2. Diagram of one pair of stimuli from Xu, Carey, & Welch, 1999. Infants
were habituated to a stationary duck on top of a car. During test, the hand lifted the
duck, which either separated from the car (apart trials) or remained connected to the car,
such that the duck and car was lifted as a single object (together trials). Reprinted from
Xu, F., Carey, S., & Welch, J. (1999). Infants’ ability to use object kind information
for object individuation. Cognition, 70, 137–166, with permission from Elsevier.
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adult concepts duck, car, animal, vehicle, book, or bottle. At the very least,
they do not deploy these concepts in the service of object individuation
under the conditions of these tasks, failing to recruit them for the central
logical work of sortals in these tasks.

Twelve-month-old infants succeed at these experiments. It is possible
that the capacity to recruit specific sortals for object individuation
develops between 10 and 12 months of age. However, another repre-
sentational possibility is consistent with the 10- to 12-month-old shift.
It may be the case that the only sortal concept even these older infants
represent is object, and by 12 months of age children have learned gen-
eralizations about whether objects with certain properties are likely to
transform into objects with other properties, or whether objects with
certain properties move independently from objects with other properties.
The question is whether the 12-month-old infants’ representational sys-
tem makes a principled distinction between sortals such as duck and
properties that can be bound to sortals such as yellow, soft, flexible, or small.

Twelve-Month-Olds’ Success—Object Properties or Object
Kind-Sortals?

In all of our experiments, the two objects also differed in terms of per-
ceptual properties—color, texture, shape, size—as well as in kind. If an
unfamiliar irregularly shaped black plastic object emerges from behind a
screen and returns, followed by an unfamiliar, spherical, green fuzzy
object, adults would represent this event in terms of two different objects
even if they had not encoded them as a telephone and a tennis ball—
indeed, even if they had never seen telephones and tennis balls before.
Although the representations of properties such as color and texture and
size are not sortal concepts, experience with objects could lead to
the generalization that properties such as these do not change over this
time course, and thus, objects contrasting on such properties must be
numerically distinct objects. The 10-month-olds’ failure shows not only
that they fail to individuate on the basis of kind distinctions but also on
the basis of property distinctions where adults would.

These considerations raise an important question: Is the success of
the 12-month-olds based on property differences rather than kind
differences? If this were so, then we would still have an interesting
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developmental shift on our hands (from not being able to draw on
property distinctions as a basis for individuation under a wide range of
circumstances to being able to do so), but this developmental shift would
not reflect the emergence of kind-sortals or their deployment in the
service of object individuation. This is a real possibility. Studies from many
laboratories demonstrate that under some circumstances 12-month-olds
or even younger children (Needham & Baillargeon, 1998, 1999; Tremulet
& Leslie, 2002; Wilcox & Baillargeon, 1998; Xu & Baker, 2005) draw on
property contrasts in object individuation. However, these demonstra-
tions do not take away from the failure to do so in the studies under
consideration here, or answer the question of whether success in these
studies at 12 months is due to property contrasts or kind contrasts.

To begin to address this question, Xu and I have recently carried out
a series of studies on the basis of the 12-month-old’s success (Xu, Carey,
& Quint, 2004). We used our original paradigm, in which infants
saw two objects emerge from opposite sides of a screen, one at a time,
each then returning behind it. In this new series, the objects differed only
in their properties. We looked at individuation based on size contrast
alone (e.g., a big cup versus an otherwise identical small cup), based on
color contrasts alone (e.g., a green ball versus an otherwise identical red
ball), based on contrasts in pattern and color and size (e.g., a small green
solid colored bottle versus a large yellow polka-dotted bottle), and based
on a within basic level kind-shape contrast (e.g., a tea-cup versus an
identically sized and colored two-handled, nippled, sippy cup). In each
case, the 12-month-olds failed to draw on the property contrasts to
establish representations of two numerically distinct objects behind
the screen; that is, they did not look longer at the anomalous outcome
of one object. Importantly, other data revealed that the babies
encoded the property differences—they took longer to habituate to
successive appearances of objects with different properties than to suc-
cessive appearances of identical objects. They simply failed to recruit
these property differences to draw conclusions concerning the number
objects involved in the event. However, in cases of a between basic-level
kind shape contrast alone (e.g., a tea-cup versus an identically sized,
patterned, and colored ball), the 12-month-olds succeeded.

It appears, then, that 12-month-olds make a principled distinction
between representations of kind-sortals and representations of properties,
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such that the former provide criteria for individuation in these experi-
ments and the latter do not. By 12 months of age, specific object kind-
sortals such as duck, bottle, book, and cup play the same direct role in object
individuation as the concept object does much earlier in development. By
12 months of age, the predicate is a duck plays a different computational
role in individuation than does the predicate is red. In sum, these data are
consistent with the suggestion that a crucial component of noun-phrase
semantics, the distinction between sortals and properties, is not part of
core cognition and becomes part of the child’s representational repertoire
between 10 and 12 months of age.

Creating Kind-Sortals—A Role for Language?

There is striking evidence that language might play some role in the
developments we see at the end of the first year of life. The emerging
capacity to individuate objects on the basis of kind distinctions is closely
tied to linguistic competence. In Xu’s and my original experiments
(illustrated in Figure 3.6), in one of the series of studies, we used a set of
objects the names of which are comprehended by some 10-month-olds
(ball, cup, bottle, book). According to the parents, about three-fourths of
the 10-month-olds participating in our studies did not comprehend
these words, and these infants failed to individuate the objects on the basis
of the kind contrasts alone. But those whose parents said that they
understood the words for the objects succeeded, even though the objects
were not named during the individuation task. Thus, those 10-months-
olds who already know the basic-level count nouns that refer to the
objects emerging from behind the screen succeed at this task. Most
10-month-olds do not yet know these words, so 10-month-olds as a
group fail (Xu & Carey, 1996).

In a new set of studies, Xu (2002) has shown that labeling the objects
during the trials themselves facilitates individuation in this paradigm. She
tested 9-month-old infants in the original Xu & Carey (1996) paradigm.
Infants were provided verbal labels for the objects. For example, when a
toy duck emerged from behind the screen, the experimenter said, in
infant-directed speech, “Look, [baby’s name], a duck.” When the duck
returned behind the screen and a ball emerged from the other side, the
experimenter said, “Look, [baby’s name], a ball.” On the test trials,
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infants were shown an expected outcome of two objects, a duck and a
ball, or an unexpected outcome of just one object, a duck or a ball.
Infants looked longer at the unexpected outcome of a single object. That
is, when the objects are labeled, success is observed three months earlier
than when they are not. In a control condition, the infants heard “a toy”
for both the duck and the ball, and their looking-time pattern on the test
trials was not different from their baseline preference. Thus, the facili-
tation observed is not due merely to the fact that labeling facilitates
attention to objects; infants were making use of the evidence from
contrastive labels in this study of Xu’s. In several additional conditions,
two contrastive tones, or two contrastive environmental sounds, or two
contrastive emotional expressions (“ahh,” “yuk”) were used instead of
two contrastive labels. Infants robustly failed to look longer at the one-
object outcome. The negative finding with all of these nonlexical con-
trasts suggests that perhaps language in the form of labeling plays a specific
role in signaling object kind-sortals for the infants.

In sum, the development of kind-sortals presents some parallels to
that of explicit quantifiers. There is an apparent developmental shift (in
this case between 10 and 12 months of age, rather than between 20 and
22 months of age) in which sortals more specific than object are first
deployed in at least some object individuation tasks. Furthermore, there is
evidence that language learning plays a role in this developmental shift.
Might this be a case of Quinian bootstrapping? I think not, just as I think
not in the case of explicit linguistic quantifiers. We already have one
reason in hand to doubt that the construction of kind-sortals between
10 and 12 months requires Quinian bootstrapping. Xu’s data suggest that
applying words to entities influences individuation by 9 months of age,
and at this age infants certainly have not built an external placeholder
linguistic structure to scaffold a bootstrapping process. Furthermore, there
is evidence from other paradigms that 9- or 10-month-olds (and even 7-
month-olds) distinguish kinds from properties.

Evidence Young Infants Represent Kinds: Categorization
and Inductive Inference

Success at drawing on the distinction between ducks and cars, shoes and
balls, bottles and books in individuating entities might possibly be
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accounted for without appeal to kind-sortals. Perhaps generalizations
stated over a perceptual quality space underlie success. Perhaps children
have learned that shape differences are particularly reliable in predicting
when objects move independently of each other, relative to other
property differences, and that shape differences tend to be preserved
when objects move on spatio-temporally continuous paths. Perhaps, but
considerations concerning the input infants receive relative to such
generalizations militate against this empiricist hypothesis. Statistical
generalizations concerning objects as they move through visible spatio-
temporally continuous paths come out the wrong way—size, color,
texture, and the like almost never change under these conditions,
whereas shape often does. Many objects are flexible and malleable
(rubber ducks, cloth toys) or have articulated parts (animals and people
and hands, many artifacts). These change shape while maintaining spatio-
temporal continuity as a whole. Indeed, in the same experiments in
which 8-month-old infants failed to trace the numerical identity of piles
of sand or piles of separately movable blocks (see chapter 3), infants
succeeded in tracking unique flexible objects, even those that assumed
three radically different shapes during their trajectories. Furthermore,
studies of infant categorization and inductive inference (to which I now
turn) support the conclusion that, by the end of the first year of life,
infants’ representations of object kinds are distinguished from repre-
sentations of properties of objects—even shape.

Object kind-sortals do much more work in our conceptual system
than providing criteria for individuation and numerical identity. Like all
concepts, kind-sortals also provide criteria for categorization. That is, we
classify objects together on the basis of all being animals, or ducks, or
tables, just as we may classify objects together on the basis of all being red,
or striped, or bigger than a breadbox. Although all concepts determine
categories, categorization on the basis of kind differs from categorization
on the basis of nonkind properties in many ways (S. Gelman, 2003;
Markman, 1989). As mentioned above, kind categorization is inductively
deeper. Far more follows from knowing that an entity is a duck than from
knowing that an entity is red. Similarly, it is kind-sortals that enter into
psychological essentialism.

A series of studies by Jean Mandler and her collaborators (Mandler,
2004; Mandler & McDonough, 1993, 1996; McDoough & Mandler,
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1998) suggest that infants represent kind concepts, at least by 9 months,
perhaps by 7 months. Mandler’s studies draw on two methodologies we
have not yet considered: habituation of manual exploration as a measure
of categorization and generalization of imitation as a measure of inductive
inference.

In manual habituation, infants are presented toys or small objects,
one at a time, and allowed to play with each one as long as they like. The
dependent measure is the amount of time spent in active exploration
(inspecting the object, trying out what activities it can participate in).
Merely banging the object, mouthing the object, or holding it while
attending elsewhere do not count. There are two types of evidence for
categorization: (1) decreasing times of exploration as additional objects
from the same category are presented (relative to control groups pre-
sented with the same number of objects not from a single category and
(2) recovery of active exploratory interest when an object from a novel
category is presented (relative to control groups presented with a new
object from the original category). Mandler and her colleagues have
found evidence that infants as young as 7- to 9-months-old categorize on
the basis of a variety of global kind categories: animals, vehicles, furniture,
and tools. A global kind is more general than a basic-level kind such as dog
or horse; Mandler calls these kinds “global,” rather than “superordinate,”
because superordinate implies hierarchy, and Mandler has evidence that
infants represent the more abstract kinds before they represent the lower-
level ones, at which point there is no hierarchy.

In these studies, Mandler asked whether the categorization is more
likely to be based on shared kind or shared perceptual properties (shape,
color, texture . . . ). She argues for shared kind. First, the stimuli are
equated for color, texture, and so on. And whereas basic-level kinds like
dogs and tables and hammers share shapes, global kinds like animals and
furniture and tools do not. Infants categorize together a turtle, a fish, a bird,
and a mammal, and they categorize together a boat, a motorcycle, an
airplane, a truck, and a car. These items do not obviously share common
shapes.

Obviously, there must be some perceptual bases for the child’s
identifying an entity as a member of a global kind (e.g., animal or
vehicle). It is unknown what these bases are. What is in question here is
whether the child’s categorization behavior is being driven by some
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perceptual contrast that is independent of global kind. At least some
attempts to discover perceptible properties that could underlie the cat-
egorization behavior have failed. Van de Walle (Van de Walle &
Hoerger, 1996) took the animal/vehicle contrast as a case study. She
pointed out that animals differ from vehicles along two perceptual
dimensions: (1) vehicles (both real vehicles and the toys used in these
experiments) are more rectilinear; animals are more curvilinear; and
(2) the part boundaries of vehicles are more salient. For example, color
contrasts co-occur with part contrasts in vehicles (wheels, being black and
rubber, are different parts from the body, being red and metalic), whereas
color contrasts on animals do not (the black patches of a pinto do not
respect the boundary between leg and body or head and body).

Van de Walle began by demonstrating that 9-month-old infants are
sensitive to these perceptual properties. She made small toys out of clay
that were not the shape of any particular animal or vehicle, making some
of them rectilinear with clear part boundaries and some curvilinear with
color changes not at part boundaries. If habituated to stimuli that were
curviliniar and had unclear part boundaries, infants of this age recovered
interest to a rectilinear object with clear part boundaries, and vice-versa.
Thus, we have a candidate perceptual basis for the discrimination
Mandler finds by 9 months of age. However, Van de Walle showed that
these perceptual distinctions did not account for the preferences in an
animal/vehicle comparison. Allowed to explore a series of animals,
infants did not recover exploratory interest to a rectilinear object with
clear part boundaries that was not an animal.

There is a general lesson to be drawn from Van deWalle’s work. The
claim that low-level perceptual properties might underlie the dis-
criminations in Mandler’s manual exploration experiments requires
positing what perceptible properties could do the trick, and then showing
that they actually do underlie the infants’ performance. The only serious
attempt to do so, so far—Van de Walle’s—failed to support the per-
ceptual hypothesis.

Van de Walle (1999) approached the question of a perceptual basis
for exploration in the manual habituation paradigm in yet another way—
by pitting an obviously perceptual contrast (color) against a kind contrast
(animal/vehicle). She habituated infants to a series of vehicles all the same
color (e.g., a red car, a red boat, a red motorcycle, a red truck) and
then presented them with either an animal of the same color (e.g., a red
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horse—familiar color, novel kind) or a novel vehicle of a different color
(e.g., a blue airplane—novel color, familiar kind). Nine-month-old
infants recovered interest to the exemplar of the novel kind and not
to the exemplar of the novel color. Thus, infants seem to be categorizing
on the basis of global kind in these studies, in spite of the fact that objects
that are members of a global kind such as animal do not share any obvious
perceptual similarity and in spite of the availability of a salient perceptual
property as a possible basis of categorization.

The second paradigm Mandler and her colleagues (Mandler &
McDonough, 1998) used to study infant categorization explores the
basis of inductive generalization. Data from this paradigm corroborate
that young infants represent global categories that are not based on
shared shape. The experimenter modeled kind-dependent actions on
a single exemplar of a category. For example, she modeled putting a dog
to sleep, saying “night, night,” or putting a key to the side of a car and
saying “vrooom, vroom”). She then assessesd the likelihood that the
infants would imitate this action given a bed and another object, or a
key and another object. The transfer objects either shared global kind
with the original exemplar or not, and if they did, they were either
perceptually similar or not. For example, after being shown a dog being
put to bed, the child might have been handed a cat and a bed (same kind,
perceptually similar), a fish and a bed (same kind, not perceptually similar)
or a car and a bed (different kind, not perceptually similar). As young as 9
months of age, infants imitated the actions with objects of the same global
category, and were completely uninfluenced by perceptual similarity (e.
g., they were as likely to put a snake or a turtle or bird to bed as a cat, but
they would not put a chair or a truck or a hammer to bed). Thus, it
appears that by 9 months of age infants categorize objects on the basis of
global kind, and kind representations are differentiated from repre-
sentations of similarity based on perceptual properties.

These experiments support the conclusion that kind distinctions play
a different role in 9-month-old infants’ categorization than do property
distinctions, just as kind distinctions play a different role in individuation
than do property distinctions. But notice that the ages here are several
months younger—children apparently categorize entities on the basis of
global kind before they draw on these distinctions in individuation.
Thus, it seems likely be 9-month-old, may represent some kind-sortals.
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Some Kind Distinctions Support Individuation by 9 to 10 Months of Age

Data from two different laboratories show that 10-month-olds use some
kind distinctions as a basis for object individuation in the Xu and Carey
paradigm. So, not only do 9- and 10-month-olds represent some kind
concepts, but also some function as sortals. Luca Bonatti and his collea-
gues (Bonatti, Frot, Zangl, & Mehler, 2002) showed that the distinction
between human heads (well, dolls’ heads) and inanimate objects served as
the basis of individuation for 10-month-olds, and at this age children do
not know the words face, head, or person nor were the objects labeled in
Bonati’s studies. Similarly, Luca Surian (Surian, Caldi, & Piretta, 2004)
showed that the distinction between an entity that moved on its own and
one that did not served as a basis of individuation at this age, again in the
absence of any linguisitic support. Thus, some kind-sortals are repre-
sented at this age, and are most likely constructed without linguistic
support.

Consider these experiments in turn. Luca Bonati and his colleagues
(2002) asked whether there were really no kind differences that could
support object individuation before 10 months. Perhaps the kinds tested
by Xu and her colleagues (bottle, shoe, cup, book, toy duck, toy car, toy
telephone, ball . . . ) are not yet represented as kind-sortals, but what
about the distinction between human beings and other objects?
Standing in for human beings were very realistic dolla’ heads on top of
featureless bodies—porcelain, rubber, and plastic heads of dolls. Bonatti
showed babies the head mounted on a stick with cloth draped below it,
like a robe, emerging from one side of a screen and returning, followed
by a toy inanimate object, also mounted on as stick with cloth draped
below it, emerging from the other side of the screen and returning.
He found that both 10- and 12-month-olds succeeded at this task.
Ten-month-olds failed if the contrast was between two toy inanimate
objects (replicating Xu’s and my studies), but they succeeded if the
contrast was between a human head and an inanimate object or between
a human head and a dog’s head

Of course, the stimuli in these studies are representations of people,
dogs, and inanimate objects—they are toys. Still, how are we to
understand the earlier success in Bonati’s study than in all of Xu’s and
my studies, which have explored dozens of sortal contrasts? Has the
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child learned that objects with the properties of human faces tend to
maintain spatio-temporally continuous paths and not turn into other
objects? Human faces are notoriously difficult to track spatio-temporally
—they don’t stay where you left them! A more likely account is that
human beings are represented as kinds (indeed, the central kinds in core
cognition of intentional agency, see chapter 5), and kind distinctions
support individuation. Some kinds may be innate, part of core cognition,
or acquired without the help of linguistic input.

Luca Surian (Surian et al., 2004) recently provided support for this
interpretation. He also replicated the Xu and Carey study, showing
failure at individuation when a toy animal was moved out by hand from
one side of the screen, followed by a toy vehicle moved out by hand
from the other side of the screen. As in Xu’s and my studies, the objects
were then left for the child to encode fully, before being moved back
behind the screen. Ten-month-old infants failed to create a represen-
tation of two objects behind the screen, just as Xu and I had found. He
then repeated the study, except now the toy animal moved out from
behind the screen on its own steam, making a sound with each step,
stayed stationary while the infant looked at it, and then moved back
behind the screen, followed by the toy vehicle’s being rolled out by
hand, making a constant sound while rolling, remaining stationary
while the infant looked at it, and then being rolled back. Under these
circumstances, where the type of motion provided evidence for dif-
ferent global kinds (animal and vehicle), infants created representations
of two distinct individuals and looked longer at outcomes when one
object was revealed behind the screen.

These data provide very strong evidence against the hypothesis that
Quianian bootstrapping is required for the construction of kind-sortals.
Prelinguistic infants represent kinds and clearly have the logical capacity
to bring kind membership to bear on object individuation.

Language and Kind Categorization

Remember, labeling two entities with distinct words leads young infants
to create representations of two distinct individuals. Conversely, labeling
distinct entities with a common label increases the likelihood that infants
as young as 9 months of age will find the categorical similarity between
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them, both at the basic level and at superordinate levels (Balaban &
Waxman, 1997; Waxman & Markow, 1995). For example, infants told,
“Look, a vehicle,” each time they are handed a vehicle, show a faster
decline in exploration time of successive vehicles than those in a no-label
condition (“Look at this”), and also are more likely to rekindle their
attention to an exemplar of a novel category (e.g., an animal or a tool).

Thus, by the time infants are 9 months of age, labels have con-
sequences for kind categorization and for kind-based individuation.
Furthermore, Sandra Waxman, Amy Booth, and their colleagues
(Waxman, 1999) have found that by 13 or 14 months of age, English-
learning infants have learned to mark the distinction between kind
representations and property representations linguistically. Using the
manual habituation paradigm described above, Waxman showed
13-month-old infants objects that either shared a global kind (e.g., were
all vehicles) or shared a salient property (e.g., were all red). When
handing the infants each object to explore, she either described each one
with the same count noun, “Look, a blicket” or with the same adjective,
“Look, a blickish one.” For a third group of infants, the objects were not
labeled—they were simply told, “Look at this.” Upon hearing a series of
objects described by the count noun, infants extracted kind similarity—
they habituated faster to the objects that shared kind and dishabituated
more robustly to an object from a different kind, compared to infants in
the no-label condition. But the count noun did not facilitate categori-
zation on the basis of property similarity (shared color or texture). The
adjective, in contrast, facilitated categorization on the basis of shared
property as well.

These conclusions have been corroborated in several studies with 14-
month-olds that depend on a word-learning paradigm. For example, if
shown four purple animals (a horse, an elephant, a giraffe, and a cat)
labeled by a noun, 14-month-olds generalize the label to a new animal of
a different color. However, if the original four objects are labeled with an
adjective, infants do not generalize the label to a new animal. In some
cases they map the adjective to the shared property; in other cases
adjective use does not lead to a principled distinction between kind and
property similarity (Booth & Waxman, 2003; Waxman & Booth, 2001).

Thirteen-month-old infants are many months away from learning the
quantificational devices of natural language. Object kind representations
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are distinguished from object property representations by the end of the
first year of life, and each type of representation is drawn upon in different
ways in individuation, categorization, and the earliest stages of language
acquisition. This distinction is not bootstrapped in the course of mastering
natural language quantifiers, even though it is mapped to language very
early in development.

The Role of Language in the Construction/Deployment of Kind-Sortals

The above data rule out the hypothesis that the construction of kind-
sortals at the end of the first year of life requires Quinian bootstrapping.
Even 7- to 9-month-olds represent some kind concepts, and even at 9 to
10 months of age some of these function as sortals. Still, it is not until
between 10 and 12 months that infants spontaneously draw on many
kind-sortals (e.g., bottle, book, shoe, duck, car, truck) in support of
individuation in nonlinguistic tasks, and language learning is implicated in
this change. There are several ways (not mutually exclusive) that language
might play a role in promoting the deployment of kind-sortals in non-
linguistic tasks.

Xu’s interpretation of these findings is that from the outset of lan-
guage learning, infants expect labels to refer to kind-sortals. She supposes
that LAD includes innate mapping rules between open-class words
referring to objects and object kind-sortals. This is an example of a innate
linking rule of the sort that supports semantic and syntactic bootstrapping.
That is, eventually this mapping will support, through semantic boot-
strapping, infants’ learning the syntactic reflexes of count nouns in their
language. Such an innate mapping would explain why infants take
contrastive labels to indicate distinct individuals (because objects that fall
under distinct kind basic-level kind-sortals are necessarily distinct indi-
viduals) and would explain why common labels applied to distinct objects
would lead infants to search for kind similarities between them. How-
ever, even if the logical capacity to represent kind-sortals is innate, and
even mapped to labels (or to nouns) as part of LAD, the child must still
discover the particular kinds in his or her world. Xu imagines that the
putatively innate mapping allows contrastive labels and shared labels to
actually play a role in the construction of previously unrepresented kind-
sortals. For example, even if the child knows of no causally deep features
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shared by blickets, that different entities are called “blicket” may lead
them to be represented as sharing a kind, much as even in mature
representations of kinds the nature of the essential features of those kinds
may be unknown (S. Gelman, 2003).

However, Waxman has added an important new chapter in this
story: she shows that at 11 months of age, hearing a common novel noun
applied to a set of objects facilitates categorization on the basis of com-
mon properties (e.g., shared color) as well as shared kind. From this result,
Waxman offers a different interpretation of the findings with 9-month-
olds from Xu’s. Waxman suggests that from the beginning of word
learning, children expect common labels (or common open-class lexical
items) to refer to entities that share properties. It is experience with
count-noun contexts that leads to the narrowing of the hypothesis that
count nouns refer to entities that share shape or kind.

Can we decide between Xu’s and Waxman’s interpretations of these
data? Xu can assimilate Waxman’s findings that shared labels increase
categorization to shared properties as follows: infants expect shared labels
to refer to shared kinds, but they have to learn what properties are good
cues to kind membership. Waxman’s story leaves unexplained how
infants create representations of kinds as opposed to properties; Xu
assumes this distinction is available from the beginning and is mapped to
language, but the child must learn about particular kinds in the world.

Xu has one recent finding that favors her interpretation over
Waxman’s. She repeated her language and individuation studies with
9-month-olds in the following four conditions: (1) distinct labels/distinct
kinds (e.g., “blicket/stad” applied to honey dipper/vacuum tube);
(2) distinct labels/identical objects (e.g., “blicket/stad” applied to honey
dipper/identical honey dipper); (3) common labels/distinct kinds (e.g.,
“blicket/blicket” applied to honey dipper/vacuum tube); and (4) com-
mon labels/identical objects (e.g., “blicket/blicket” applied to honey
dipper/identical honey dipper). Conditions 1 and 3 replicated the
earlier studies, although now with novel labels and novel objects: if
infants see a vacuum tube and honey dipper, labeled “blicket” and “stad,”
respectively, as each emerges in alternation from opposite sides of a
screen, they establish a representation of two objects behind the screen, in
contrast to the condition where the two objects are both labeled “stad.”
Conditions 2 and 4 asked whether distinctive properties are necessary for
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individuation under these conditions, as would be the case if contrasting
labels heightened interest in contrasting properties, in turn leading to
individuation. They were not. Condition 2 patterned with condition 1—
in the face of distinctive labels, each applied to identical honey dippers
emerging from opposite sides of the screen, infants established repre-
sentations of two objects behind the screen. And, of course, condition 4

patterned with condition 3—children failed to establish representations
of two individuals if they heard only one label, whether or not the
features of the objects emerging from behind the screen differed. In a
crucial control condition, Xu brought out a single object and gave it two
contrastive labels, and then brought out the other (different) object and
gave it the same two contrastive labels. Here, the infants did not infer two
objects behind the screen—the distinctive labels must be applied to
objects for which there is spatio-temporal ambiguity concerning
numerical identity. Thus, by 9 months of age, distinctive labels have
consequences for individuation by themselves—even in the absence of
contrasting properties. If children expect open-class lexical items to refer
to kind-sortals, then these results are as expected. It is as if the infant is
saying to herself, “I don’t see the difference between the entity/entities
emerging from opposite sides of the screen, but since they are of different
kinds, they must be different objects” (Xu, 2005). Of course, eventually
the assumption that membership in different kinds implies distinct indi-
viduals is relaxed. As mentioned earlier, there are stage-sortals (puppy) and
phase-sortals (pet) as well as kind-sortals (dog)—and even kind-sortals are
hierarchically organized (dog, animal). Xu’s hypothesized linking rule
serves in the earliest stages of concept and language acquisition.

One last study from Xu’s laboratory (Dewar & Xu, 2007) underlines
how specific the mapping is that is guiding children’s learning in these
cases. The fact that contrast labels lead the child to establish representa-
tions of two individuals is consistent with three representational possi-
bilities:

1. Two open-class labels suggests two individuals (no further analysis).
2. Labels are being analyzed as count nouns: two open-class labels sug-

gests two constrasting kinds, which suggests two individuals.
3. Labels are being analyzed as proper nouns: two open-class labels

suggests two named individuals.
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Xu and her colleagues (Dewar & Zu, 2007) carried out a study
confirming the second hypothesis. Children were familiarized to boxes
being brought out and opened from the front, revealing either a pair of
identical novel objects (e.g., two honey dippers) or a pair of different
novel objects (e.g., a vacuum tube and a plumber’s T). The boxes always
contained one of these pairs of objects, and they were brought out in
random order so the child could not predict what would be revealed
when the front of the box was opened. The 12-month-old infants were
habituated to these events, looking times being measured when each pair
of objects was revealed. After habituation, the experimenter looked into
a closed box from the top and said either “Look, a blicket,” “Look, a
stad,” or “Look, a blicket; look, a blicket.” The box was then opened
from the front revealing either the pair of identical objects (the two
honey dippers) or the pair of objects from distinct kinds. If hypothesis 1 or
3 were correct, the child should not differentiate these two outcomes,
because the language specifies two individuals and there are two indi-
viduals in each case. But on hypothesis 2, the child should expect the pair
of objects from distinct kinds when hearing “a blicket, a stad” and the pair
of identical objects when hearing “a blicket, a blicket.” This is what
happened. These data provide convincing evidence that young infants
expect labels applied to novel objects to be referring to an object kind,
and this expectation certainly provides relevant evidence concerning
which perceptible differences among objects signal kind distinctions.

Other hypotheses concerning the role of language in kind-based
categorization and individuation may also be right. Words for kinds are
explicit symbols and must obviously be learned. Words for kinds may be
stored directly in working memory, providing an efficient representation.
The idea is that these symbols may then directly into representations of
events (duck in box). Needham and Baillargeon (2000) call such symbols
for kinds “summary representations” and suggest that the availability of
summary representations helps infants in Xu’s and my difficult individ-
uation tasks. I agree. They propose that what is being learned in the last
year of life may or may not be not be kind-sortals themselves, but def-
initely includes explicit linguistic symbols for kind-sortals. Before the
creation of such symbols, representations of events may be articulated in
terms of object-files. Object-files are symbols for objects. Representa-
tions of properties, such as shape, size, color, texture, and perhaps kind,
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may be bound to object-files. The infant who has only object-file
representations represents the result of an event in which a duck is
removed from and returned to a box as object in object, perhaps with
properties bound in the object-files: object (yellow, rubber, small, curved,
duck) in object (blue, hard, large, rectilinear, box). Clearly, such representations
are more cumbersome than duck in box.

These suggestions for what may be changing between 7 and 12

months or so are not mutually exclusive. The child may create some
representations of kind-sortals de novo and the child certainly must learn
what members of antecedently represented kinds are called. These lin-
guistic labels are symbols that function in thought, as do count nouns. If
the child expects kinds to be labeled by open-class lexical items, language
may play a role in all of these developments. These are all paradigm
examples of weak effects of language on thought.

The Origin of Kind-Sortals

To summarize the argument to here, Xu’s and my studies suggest that
Quine and Piaget were largely right in their speculation that young
infants do not represent kind-sortals such as animal, vehicle, dog, car, cup,
bottle, book, ball, even when they can recognize entities from these kinds as
familiar and even predict their behavior. My evidence in support of this
proposal is that early in infancy there are no quantificational con-
sequences of categorization in terms of these concepts. However, con-
trary to Quine’s and Piaget’s speculations, Bonatti’s, Mandler’s, Surian’s,
Waxman’s, and Xu’s studies provide evidence that children have created
kind-sortals that cover these entities by 10 to 12months of age. Thus, the
capacity to represent specific object kind-sortals, distinct from properties,
does not require Quinian bootstrapping. The child does not learn
interrelations among natural language quantifiers, only then reinter-
preting the meaning of “dog” in terms of this structure. Nor does it await
the end of Piaget’s putative sensori-motor stage of development. I agree
with Xu that this capacity is most likely innate, and is mapped to language
as part of the LAD. Still, we need an account of how new kind-sortals are
constructed. That is, language may signal to the child that two entities
differ in kind (distinctive labels) or share kind (common labels), but words
don’t tell the child what the relevant kinds are.
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The literature on the emergence of the first kind-sortals reflects the
now familiar tension between empiricist and nativist approaches to
infants’ representations. As in Xu’s proposal, the linguistic evidence could
lead the child to extract shape as a reliable indicator of shared kind or, as
Linda Smith and her colleagues suggest, the relevant generalizations may
be stated in a perceptual vocabulary—shared shape begins to be privi-
leged as a basis of similarity. But shared shape is not the same as shared
kind, and the evidence reviewed above leads me to favor Xu’s and
Waxman’s conclusions that kinds are distinguished from properties at the
very outset of language learning.

So how does the child construct concepts of new kinds? Many things
might trigger establishing a new kind representation, including the lexical
evidence that Xu and Waxman document infants can use. Other infor-
mation may be evidence of inductive potential (e.g., a particular shape
predicts functional or causal affordances). Consistent with psychological
essentialism, kind representations are often placeholders: infants (or adults)
can then discover at their leisure, in a process that never ends throughout
development, to fill in those placeholders with theories of the causal
mechanisms that underlie the inferential potential of any given kind. In the
case of animal kinds, infants have the resources of core cognition to begin
filling in those placeholders, as the child has evidence that animals are
agents (chapter 5). Also, the child has the central causal learning processes
discussed in chapter 6 to aid in filling in kind placeholders.

Kinds are reananalyzed throughout life, and new kind-sortals are
constructed. Chapters 9 through 11 consider the bootstrapping
mechanisms that support the constructions of kind representations that
transcend those that draw on core cognition.

Conclusions

The case studies in this chapter—set-based quantification and kind-sortals
—turned out to exemplify continuity, as well as the resources needed for
semantic and syntactic bootstrapping, rather than Quinian linguistic
determinism. The ontology presupposed by at least one natural language
—English—is not a construction that has appeared midway during the
cultural evolution of human beings. The young infant distinguishes
between individuated entities such as objects and nonindividuated
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entities such as sand, and compares representations of sets of objects with
respect to both continuous and discrete quantification. Also, at least by
the time the infant is about a year old, he or she has constructed her first
object kind-sortals, distinguishing kind-sortals from properties in cate-
gorization, individuation, inductive inference, and language. In this case,
Quine almost certainly got it completely backwards. Natural languages
most likely have the quantification machinery they do because of the
quantificational resources of prelinguistic mental representations (both
ontogenetically and phylogenetically), as these were drawn upon in
creating the language-acquisition device. The ontological commitments
discussed here reflect core cognition, supporting learning language rather
than resulting from it.

Nonetheless, there is room for genuine effects of language learning on
nonlinguistic mental representations. Language learning certainly plays a
role in the construction of specific kind-sortals, which are then deployed
in infants’ encoding of events unfolding around them. Language learning
may also play a role in the availability and deployment of set-based
quantification. These are weak effects of language on thought, at most—
the child is operating within innately given representational resources.

Although these cases did not turn out to involve Quinian linguistic
determinism, I am sympathetic to Quine’s picture of conceptual devel-
opment. Chapters 8 through 11 endorse Quine’s ideas, presenting cases of
developmental discontinuities where Quinian bootstrapping results in the
construction of representational capacity more powerful than any ante-
cedently available.

NOTES

1. When different languages mark different distinctions, this mechanism leads to
weak Whorfian effects. Many examples of weak Whorfian effects have been attested.
Examples include Borditsky’s studies of the effects of cross-linguistic variation in
gendermarking, gender marking (Boroditsky, 2001; Boroditsky, Schmidt, & Phillips,
2003; Bowerman and Choi’s (2003) studies of the effects of cross-linguistic variation
in the contrasts underlying different spatial prepositions, and many more.

2. “Substance-sortal” is a misleading term, in my view, because these concepts
do not pick out substance kinds like gold or water but rather enduring entities like
dogs, trees, and tables.
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8
Beyond Core Cognition: Natural Number

When the great constructivist mathematician Leopold Kronecker
remarked “The integers were created by God; all else is man-made”
(cited in Weyl, 1949, p. 33), he was making a metaphysical claim. Yet,
the remark also expresses a natural position concerning the cognitive
foundations of arithmetical thought. If we replace “God” with “evolu-
tion,” the position would be that evolution provided us with an innate
input analyzer that outputs representations of the positive integers, the
natural numbers. The claim would be that the capacity to represent
natural number is part of core cognition. If we continue to interpret
Kronecker psychologically, we find he would be saying that all the rest of
mathematics, including the rest of the number concepts (rational, nega-
tive, 0, real, imaginary, etc.) were culturally constructed by human
beings. On this interpretation, Kronecker was espousing the continuity
hypothesis with respect to integer representations; they are available
throughout human development, both historically and ontogenetically.
Indeed, many modern cognitive scientists, most notably Rochel Gelman
and Randy Gallistel, have argued for the continuity of integer repre-
sentations throughout development (Gelman & Gallistel, 1978; Gallistel
& Gelman, 1992). This chapter argues that evolution did not give
humans the positive integers. Rather, the capacity to represent the
positive integers is a cultural construction that transcends core cognition.

I turn, here, to cases of discontinuities in conceptual development.
Unlike core cognition, unlike the representations in the language-
acquisition device, and unlike innate central representations such as cause,
much of the human conceptual repertoire is not continuous through the
life span. To convince you of this claim, I must meet two challenges, and
these are the challenges I take on in the rest of the book. The first
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challenge is descriptive: to establish discontinuities in cognitive develop-
ment by providing analyses of successive conceptual systems, CS1 and
CS2, demonstrating in what sense CS2 is qualitatively more powerful
than CS1. Further, I must provide evidence that children indeed have
these two systems of representations at successive points in development
—that is, I must demonstrate within-child consistency across a wide
variety of tasks reflecting the two different systems of concepts, CS1 and
CS2. Also, if CS2 transcends CS1 in the sense of containing concepts not
representable in CS1, it must be the case that CS2 is difficult for children
to learn. Great difficulty in learning provides indirect evidence that a
given CS2 does indeed require representational resources not available in
CS1. The second challenge is explanatory: to characterize the learning
mechanism(s) that get us from CS1 to CS2.

I begin by taking on the descriptive challenge, and after showing that
the acquisition of the capacity to represent natural number meets it, I take
on the explanatory challenge. I elaborate on a particular type of boot-
strapping process, Quinian bootstrapping, and I sketch two alternative
Quinian bootstrapping processes that might account for the acquisition of
the capacity to represent natural number.

The Descriptive Challenge

Empirical Arguments for Continuity

In modern cultures, the ontogenetically earliest explicit representational
system (in the sense of being expressed in shared symbols) with the
potential to represent natural number are numeral list systems. Most, but
not all, cultures have ordered lists of words (numerals) for successive
integers (e.g., “one, two, three, four, five, six . . . ” in English). Numeral
lists are used in conjunction with counting routines to establish the
number of individuals in any given set. In their seminal book on toddlers’
number representations, Rochel Gelman and Randy Gallistel (1978)
argued that if young toddlers understand what they are doing when they
count (i.e., establishing the number of individuals there are in a given set),
then, contra Piaget, they have the capacity to represent number. Gelman
and Gallistel analyzed how numeral list representations work: there
must be a stably ordered list of symbols (the stable order principle). In
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counting, the symbols must be applied in order, in 1–1 correspondence to
the individuals in the set being enumerated (1–1 correspondence princi-
ple). The cardinal value of the set is determined by the ordinal position of
the last symbol reached in the count (cardinality principle). These prin-
ciples indeed characterize counting, and honoring them guarantees that
number representations implement the successor function: For any symbol
in the numeral list that represents cardinal value n, the next symbol on the
list represents cardinal value n þ 1. It is the successor function (together
with some productive capacity to generate new symbols on the list) that
makes the numeral list a representation of natural number.

Gelman and Gallistel made a bold argument for continuity of
number representations throughout development. They noted evidence
for infant and animal representation of number (see chapter 4; of course,
there are now many more relevant studies than were available in 1978).
They suggested that infants and animals establish numerical representa-
tions through a nonverbal counting procedure. Their hypothesis at that
time was that babies and animals represent a list of symbols, or
“numerons,” such as %, ,̂ #, $, @, . . . Entities to be counted are put in
1–1 correspondence with items on this list, always applying the symbols
in the same order. The number of items in the set being counted is
represented by the last item on the list reached, and its numerical value is
determined by the ordinal position of that item in the list. For example,
in the list above, “̂ ” represents 2 because “̂ ” is the second item in the list.

Gelman’s and Gallisel’s argument for continuity drew on evidence
that they took to show that toddler’s counting is constrained by the
counting principles almost from its inception. Toddlers use a stably
ordered count list and tag each item in a count only once. Gelman and
Gallistel suggested that toddlers’ learning of a linguistic count list is
guided by their antecedent nonlinguistic count list. Their proposal for the
nonlinguistic representation of number is a paradigm example of a
continuity hypothesis, for this is exactly how languages with explicit
numeral lists represent the positive integers. On their hypothesis, the
child learning “one, two, three, four, five . . . ” need only solve a
mapping problem: identify the list in their language that expresses the
antecedently available numeron list. Originally learning to count should
be on the same order of difficulty as is learning to count in Russian, once
one knows how to count in English. If, in contrast, integer
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representations are discontinuous with core cognition, coming to rep-
resent the positive integers should be hard.

Wynn’s Difficulty of Learning Argument Against
the Gelman/Gallistel Continuity Proposal

Children learn to count during the ages of 2 to 4 years, and contrary to the
predictions of Gelman and Gallistel’s 1978 numeron-list theory, learning
to count is far from easy. Although young toddlers use a stably ordered list
and count each object just once, honoring the stable order and 1–1

correspondence principles, they do so for almost a year and a half before
they figure out the cardinality principle—that is, before they figure out
how counting represents number. This fact in itself does not defeat the
continuity hypothesis, for we do not know in advance how difficult is it to
learn an arbitrary list of ordered words or to discover that one such list
(e.g., “one, two, three . . . ”, rather than “a, b, c, . . . ” or “Monday,
Tuesday, Wednesday . . . ”) is the list in English that represents number.
True, but work by Karen Wynn (1990, 1992a) showed that children have
difficulty discovering the meanings of specific number words even after
they have solved these two problems. The developmental process through
which children learn the meanings of the number words, therefore, is at
odds with that predicted by the continuity thesis.

Wynn demonstrated that for over a year, young children know the
numerical meaning of some words in the count sequence but not others.
First, she identified children who could count at least to six when asked
how many objects there were in an array of toys. These 2- to 3-year-old
children honored 1–1 correspondence in their counts, and they used a
consistently ordered list, although sometimes a nonstandard one such as
“one, two, four, six, seven . . . ” She went on to show that if such a child
were given a pile of objects and asked to give the adult “two” or “three”
or any other number the child could use in the game of counting, most
2- and 3-year-old children failed. Instead, young children grabbed a
random number of objects (always more than one if the numeral was two
or higher) and handed them to the experimenter. Also, shown two cards
depicting, for example, two versus three balloons and asked to indicate
which card had two balloons on it, young children responded at chance.
Thus, in spite of being able to count at least to six, these children did not

290 The Origin of Concepts



know the numerical meaning of the words “two,” “three,” “four,”
“five,” or “six.”

There is one more observation of Wynn’s that is important to the
evaluation of the Gelman/Gallistel continuity hypothesis. She showed
that, from very early in the process of learning to court, children know
what “one” means. They can pick one object from a pile when asked,
and they correctly distinguish a card with one fish from a card with three
fish if asked to indicate the card with one fish. Further, they know that
the other words in the count sequence contrast with “one.” They always
grab a random number of objects greater than one when asked to hand
over “two, three, four . . . ” objects, and they also successfully point to a
card with three fish when it is contrasted with a card with one, even
though their choices are random when three is contrasted with two. Such
children are called “one”-knowers, for they know the meaning only of
the verbal numeral “one.” In all of Wynn’s studies with 2 ‰- to 3 ‰-
year-olds, she found only one no numeral-knower.

Thus, Wynn’s studies provide evidence that toddlers learn the English
count list and identify the list as relevant to number very early on (younger
than age 2 ‰): they know what “one” means, and they know that “two,
three, four,” and so on” contrast numerically with “one.” They are in this
state of knowledge for more than a year before they work out the
principle that allows them to determine which number each numeral
refers to. This state of affairs is impossible on the numeron-list continuity
hypothesis, whereby the English count list need only be identified and
mapped onto the putative preexisting nonlinguistic numeron list that the
infant already uses to represent number. The counting principles, if
understood, guarantee that a numeron-list representation of the integers
specifies the meaning of all of the symbols on the list.

In sum, in spite of the evidence that prelinguistic infants represent
number, core cognition of number cannot have the format of a numeral
list system. Even after children have learned the list, know how to count,
and know that the list encodes number, they do not immediately infer
how the list encodes number. Learning to count in English is not
remotely like learning to count in French, once one knows how to count
in English. That is, English speakers learning French do not learn the list,
going through a stage where they know that it refers to number, but take
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“deux,” “trois,” “quatre,” and “cinq” to be roughly synonymous with
each other, meaning plural or some.

Wynn’s argument against the continuity hypothesis is indirect. The
difficulty children have learning how the numeral list represents
number cannot be explained with the hypothesis that infant repre-
sentations of number are a nonlinguistic numeral list, and that this
representation guides children in learning to count. But direct evidence
regarding continuity is also available to us. Chapters 4 and 7 provided
positive characterizations of toddlers’ quantificational knowledge at the
outset of learning to count. We can examine the core cognition systems
with numerical content and specify the ways in which integer repre-
sentations transcend them. The most important task for one attempting
to establish conceptual discontinuity is to characterize CS1 and CS2,
demonstrating in what sense CS2 contains representations not
expressible in CS1.

The reader may be forgiven for being a bit confused at this point, or
for suspecting that I am contradicting myself. Haven’t I argued that a
signal property of core cognition is that it is continuous throughout
development? Didn’t chapters 2 through 7 demonstrate that the repre-
sentations that articulate cognition in infancy also play a role in the
mental lives of adults? Yes, certainly, and I am not here taking back that
infants have core cognition of number: the analog magnitude and the
parallel individuation systems described in chapter 4 and the set-based
quantification system described in chapter 7. These are continuous
throughout development. What is at issue here is whether these systems
represent natural number (the positive integers).

In later writings, Gallistel and Gelman (1992) abandoned their
hypothesis that infants’ number representations are subserved by a
nonlinguistic numeron list, instead suggesting that the linguistic
numeral list representation of number is continuous with the analog
magnitude number representation system. They, along with many
others (e.g., Dehaene, 1997; Wynn, 1998), assume that learning what
“five” means consists of learning a mapping between the number word
and a particular analog magnitude within the system of magnitudes that
represent number. This assumption seems warranted by two facts: First,
analog magnitude representations constitute a system of core cognition,
and thus they are available to infants as they face the problem of
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language learning. Second, adults (and even preschool children) have
constructed a mapping between the numeral list and analog magnitude
representations of number (see chapter 4 for evidence that adults have
constructed this mapping; for preschoolers, see Huntley-Fenner, 2001;
LeCorre & Carey, 2007; Lipton & Spelke, 2005, Temple & Posner,
1998). The continuity hypothesis would be confirmed, then, if analog
magnitude representations represent natural number, or if any other
system of core cognition did so; and of course it is disconfirmed if they
do not. They do not.

Why the Numeral List Transcends Analog Magnitude
Representations of Number

Gallistel and Gelman (1992) argued that the Church and Meck accu-
mulator model described in chapter 4 is formally identical to the numeral
list representational system of positive integers. The successive states of
the accumulator serve as the successive integer values, the mental symbols
that represent the cardinal value of the set. Gallistel and Gelman pointed
out that the accumulator model satisfies all the principles that support
verbal counting: States of the accumulator are stably ordered, gate
opening is in 1–1 correspondence with individuals in the set, and the final
state of the accumulator represents the number of items in the set. Given
that infants represent analog magnitudes, and that the accumulator model
of analog magnitude representations implement a counting routine,
Gallistel and Gelman argued that this system is continuous with and is
likely to be the ontogenetic underpinnings of learning to count and
constructing an explicit verbal numeral list representational system of
number. This is the position Dehaene (1997, 2001) seemed to endorse as
well when he said that the verbal system provides a list of words to
express the numerical meanings captured by states of the analog mag-
nitude number representation system.

Unfortunately for this proposal, there is considerable evidence that
suggests that the Church and Meck model is false, and that analog
magnitude representations of number are not constructed through an
iterative process (see chapter 4). If analog magnitude representations were
created by an iterative process that implements a counting routine, then
the time to enumerate sets should increase monotonically with increasing
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set size. Instead, over wide ranges in set sizes studied so far, the time to
create an analog magnitude representation of sets is constant for both
adults and infants (for adults, see Barth, Kanwisher, & Spelke, 2003; for
infants, Wood & Spelke, 2005b). Moreover, subjects are able to dis-
criminate visually presented numerosities under conditions of stimulus
size in which they are not able to attend to individual elements in
sequence (Intriligator & Cavanagh, 2001). Under these circumstances,
numerosity discrimination could not possibly depend on a process of
counting each entity in turn, even very rapidly.

These considerations have led to models in which analog magnitude
representations are computed by input analyzers operating over indivi-
duals in parallel (e.g., Church & Broadbent, 1990; Dehaene & Changeux,
1993; Zorzi & Butterworth, 1997). These models differ from the original
Meck and Church accumulator model in a number of important ways.
Because the processes that construct the analog magnitude representa-
tions are not iterative, they are not formed in sequence and therefore are
less likely to be experienced as a list. Moreover, the process that estab-
lishes the analog magnitude representations does not require that each
individual in the set to be enumerated be attended to in sequence,
counted, and then ticked off (so that each individual is counted only
once). These mechanisms do not implement any counting procedure.

Most important, none of the analog magnitude representational
systems, even Church and Meck’s accumulator system, has the power to
represent natural number. For one thing, there is a highest number any
analog magnitude system can represent, owing to the capacity of the
accumulator and/or the discriminability of the individuals in a set,
whereas base-system numeral lists do not have an upper limit (subject to
the coining of new words for new powers of the base). For another,
analog magnitude systems provide merely approximate representations of
the numbers in their domain, even one, whereas numeral list systems
represent each natural number exactly.

All analog magnitude representations differ from any representation
of the natural numbers, including numeral list representations, in two
crucial respects. Because analog magnitude representations are inexact
and subject to Weber fraction considerations, they fail to capture small
numerical differences between large sets of objects. The distinction
between eight and nine, for example, cannot be captured reliably by the
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analog magnitude representations of human adults. Also, noniterative
processes for constructing analog magnitude representations—those
favored by the timing data alluded to above—include nothing that
corresponds to the successor function, the operation of adding one to a
given integer in order to generate the next integer. Rather, all such
systems positively obscure the successor function. Since numerical values
are compared by computing a ratio, the difference between one and two
is experienced as different from that between two and three, which is
again experienced as different from that between three and four. And, of
course, the difference between eight and nine is not experienced at all,
since eight and nine, like any higher successive numerical values, cannot
be discriminated.

In sum, analog magnitude representations are not powerful enough
to represent the natural numbers and their key property of discrete
infinity. They do not provide exact representations of numbers and they
obscure the successor function, which is constitutive of natural number.

Why the Parallel Individuation System Cannot Represent
Natural Number

As argued in chapter 4, in addition to analog magnitude representations,
there is another core cognition system of representation with numerical
content: the parallel individuation system. If this system had the power to
represent natural number, then the continuity thesis would stand. This
system does not remotely have the capacity to do so. Unlike the analog
magnitude number representation system, the parallel individuation
system is not dedicated to number representations. Number is only
implicitly represented, in that computations of 1–1 correspondence are
made over symbols for individuals represented in parallel in models of
arrays of objects and events. The system of parallel individuation, like that
of analog magnitude number representations, contains machinery for
indexing and tracking sets of individuals, but it contains no symbols for
cardinal values. The only symbols in such models represent the indivi-
duals themselves. Also, the system of parallel individuation has an upper
bound at very low set sizes indeed—three for infants. With this system of
representation, infants cannot even represent four, let alone seven or 32
or 1,345,698.
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Why Natural Language Quantifiers Do Not Represent Positive Integers

Chapter 7 argued for a third innate system of representation with
numerical content: the set-based system that underlies natural language
quantification. Numerals, when used in sentences, are quantifiers, so this
system is clearly implicated in number word meanings. Further, the
quantificational semantics of natural languages may distinguish singular
(one), dual (two), sometimes trial or paucal (three or several), and most
languages have approximate quantifiers like “many” or “some” or
“more” that pick out numerical magnitudes. However, barring the
numeral list itself, natural language includes no representations of exact
cardinal values above three. Natural language quantifiers do not imple-
ment the successor function.

Comments on the Use of the Term “Number” in the phrase
“Core Number Cognition”

When we say that infants or nonverbal animals represent number, it is very
important to be clear on what we are claiming.Wemust specify the precise
nature of the symbol systems that underlie the number sensitive behavior,
and ask in what senses they are representations of number—what numbers
do they have the capacity to represent and what number-relevant com-
putations do they support? This was the goal of chapters 4 and 7. I have
argued that none of the representational systems that underlie infants’ or
animals’ behavior on nonlinguistic number tasks represent number in the
sense of natural number or positive integer. Nonetheless, all three systems
support number-relevant computations, and the analog magnitude system
contains symbols for approximate cardinal values of sets. Because of this
each deserves to be called a representation of number. By specifying the
format and the computations defined over particular class of representa-
tions, one can say precisely what numerical content they have. It then
becomes amerely terminological matter whether onewants to use the term
“number” only for natural number or for the integers or for the integers
plus the rationals plus the reals (in which case there is no core cognition of
number) and adopt some other term for the quantificational content of core
cognition systems (e.g., parallel individuation, approximate cardinal value,
set-based quantification).
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Growing up in a culture where counting is salient, like the United
States, children construct a representation of the positive integers
between ages 3 and 4. At this point they have constructed a represen-
tation of the positive integers (or at least a finite, but expandable, subset of
them). They deploy their count list in accordance with Gelman and
Gallistel’s counting principles and this ensures that it implements the
successor function.

This case of conceptual development is shaping up well to meet
descriptive challenge of providing evidence for a developmental discon-
tinuity. I have characterized CS1 (in fact, three CS1s) and their repre-
sentational capacities, providing evidence that young children indeed have
each CS1. I have characterized a CS2 (the numeral list representation of
the positive integers) and its representational capacities, showing how it
qualitatively transcends those of its predecessors. Furthermore, as required
by the discontinuity hypothesis, it is very difficult to learn.

Within-Child Consistency on Tasks that Reflect CS2

The ways in which CS2 transcends core cognition makes sense of why it
takes children a year and a half or two years to figure out how counting
represents number. Not only does the discontinuity hypothesis require
that constructing CS2 should be difficult, but it also predicts that
behavioral measures will reflect a qualitative change in representational
capacity as CS2 is constructed. We should see within-child consistency
on a whole variety of tasks that reflect CS2. And indeed we do.

Preschool children’s performance on tasks that reflect an under-
standing of how counting represents number has been extensively
studied. Dozens of studies have used Wynn’s Give-a-Number task, in
which children are asked to create sets with a cardinal value named with a
numeral (“Give me one,” “Give me two,” “Give me three,” etc.). They
all revealed a reliable developmental sequence. First, children are no
numeral-knowers—they cannot even reliably give one object when
asked for it. Between 24 and 30 months of age, most English-learning
children become “one”-knowers. They can reliably give one object but
hand over a random number of objects (always greater than one)
when any other numeral in their count list is used in the request. They
are in this stage for 6 to 9 months. They then become “two”-knowers
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(can reliably give one or two objects; chose a random larger number for
any other numeral), and then “three”-knowers. Although it is much
rarer, “four”-knowers have also been observed. Then, around age 3‰ on
average, English middle-class children become cardinal principle
knowers—they work out the numerical meaning of the activity of
counting and can now reliably produce sets with the cardinal value of any
numeral in their count list.

I shall call “one”-, “two”-, “three”- and “four”-knowers, “subset-
knowers,” because they know the numerical meaning of only a subset of
the numerals on their count list. The questions with respect to within-
child consistency are twofold: First, is there evidence from a wide variety
of measures for a qualitative shift between subset-knowers, on the one
hand, and cardinal principle knowers, on the other? Second, how con-
sistent is knower level within subset-knowers? Does a “one”-knower
reveal knowledge only of the numeral “one” on every task that probes
for such knowledge? Ditto for “two”-, “three”- and “four”-knowers.
Many sources of data provide affirmative answers to both questions.

Several measures of within-child consistency suggest a qualitative
shift in understanding how counting represents number upon becoming
a cardinal principle knower. In Karen Wynn’s (1990, 1992a) original
studies, subset-knowers almost never counted to produce sets (to give
five apples, they merely grabbed a handful), whereas cardinal principle
knowers almost always counted out large sets. Also, when simply asked to
count a set of objects, children in both groups could do so with few
errors, but then after counting, if asked “How many was that?” the
cardinal principle knowers almost always merely repeated the last word of
their previous count, whereas subset-knowers rarely did so. Rather,
subset-knowers recount, or provide a numeral that does not match
the last word of their count. This suggests that subset-knowers do not
realize that the last word reached in a count represents the cardinal value
of the set. Later studies confirmed these findings and extended them.
Even cardinal principle knowers sometimes make mistakes when creating
sets of a requested number. Children are asked to count and check their
answers. When the count reveals an incorrect set-size, cardinal principle
knowers virtually always correct appropriately. Subset-knowers, in
contrast, leave the set unchanged or correct in the wrong direction (e.g.,
add more objects when the count revealed that there were already too
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many) on more than 70% of the trials (Wynn, 1990, 1992a; LeCorre,
Brannon, Van de Walle, & Carey, 2006).

Mathieu LeCorre, Elizabeth Brannon, Gretchen Van de Walle, and I
(2006) have recently extended the data showing qualitative differences
between cardinal principle knowers and subset-knowers. Adapting a
procedure introduced into the literature by Rochel Gelman (1993), we
studied what numeral children produced when asked simply “What’s on
this card?” The cards in question depicted sets of objects, ranging number
from one to eight. We modeled the use of numerals in the description
for the first card in a series. For example, if the first card had eight
apples, and if the child said, “some apples,” or “apples,” we’d say, “that’s
right, there are eight apples.” This procedure elicits numeral use. We
divided our participants into subset-knowers and cardinal principle
knowers according to Give-a-Number, and we found qualitatively
different performance on What’s-on-this-Card as a function of this
division. Subset-knowers rarely produced both a count (“one, two,
three, four, five” and a cardinal response (“five apples”), but if they did,
the cardinal response often did not match the last word of their count.
Cardinal principle knowers, in contrast, very often counted for large sets
and always produced a cardinal response that matched the last numeral
in their count list. More important, it was possible to divide children
into cardinal principle knowers and subset-knowers on the basis of
their performance on What’s-on-this-Card alone. Cardinal principle
knowers produced cardinal responses for all cards, up to sets of eight,
whereas subset-knowers could produce them only for sets of one (“one”-
knowers), for sets of one and two (“two”-knowers), for sets up to three,
or to four (“three”- and “four”-knowers). It is nontrivial that subset-
knowers can be identified on this task, for it makes very different pro-
cessing demands than does Give-a-Number. In Give-a-Number, chil-
dren must hold a numeral in memory and use counting to produce a set
with that cardinality. In What’s-on-this-Card, children must merely use
counting (or some other method) to determine a cardinal value of a set.
Yet, some children could determine a cardinal value for only a subset of
the numerals on their count list, and these children rarely used counting
to do so. These are the subset-knowers. And the striking result is that
subset-knowers on What’s-on-this-Card were also subset-knowers on
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Give-a-Number, and so too cardinal principle knowers on one measure
were cardinal principle knowers on the other (LeCorre et al., 2006).

What children said for sets larger than those for which they could
produce a correct numeral was informative. Consider first a “one”-
knower. What this child would do, almost always, is say “two apples” for
sets of apples ranging in value from two to eight. Similarly, a “two”-
knower would typically use just one numeral (e.g., “three”), or just two
numerals (e.g., “three” and “four”) for all sets larger than two. Children
did not produce larger numerals for larger set sizes beyond their knower
level. This suggests that not only do subset-knowers not use counting to
solve this task but also that they have not mapped higher numerals
beyond their knower level onto analog magnitudes. We will return to
this result later, when we consider the role mappings to analog magni-
tudes play in the construction of the integer list representation of natural
number, and when we discuss the process through which children create
a mapping between their numeral list and analog magnitude repre-
sentations. For now, though, the important conclusion is that many
different tasks provide evidence for a qualitative change in understanding
counting upon becoming a cardinal principle knower.

LeCorre extended the evidence for a qualitative change between
cardinal principle knowers and subset-knowers to still another task.
Making the processing demands on the child as few as he could imagine,
he introduced a picky puppet who wanted things just so. The puppet
announced he wanted “six” cookies, or “seven” or “eight.” Another
puppet then counted out a set of puppets, stopping at the number asked
for, or one more or one less. The question to the child was simply, “Is
that six?” (or whatever the puppet requested). One could solve this task
with less than a full appreciation of the cardinality principle (an unin-
terpreted “last word rule” would do), but surely if the child understood
how counting represents number he or she should succeed. Subset-
knowers (as assessed on Give-a-Number) failed; cardinal principle
knowers succeeded.

The above analyses demonstrate the within-child consistency one
would expect if CS2 (commanding the numeral list representation of the
positive integers) is qualitatively different from CS1 (being a subset-
knower). Children are designated subset-knowers or cardinal principle
knowers on the basis of their performance on a single task—Wynn’s Give-
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a-Number task. Subset-knowers fail to demonstrate an understanding of
how counting represents number on a wide variety of tasks and cardinal
principle knowers demonstrate understanding on all of them.

The within-child consistency is also found within subset-knower
level. The term “‘one’-knower” means that of all the numerals on her
count list, the child knows the numerical meaning only of the numeral
“one.” Again, children are usually designated “one”-knowers on the
basis of performance on Give-a-Number. But if they truly know only the
numerical meaning of the word “one,” they should fail to demonstrate
knowledge of the meanings of higher numerals on any task. And indeed,
for three different tasks that diagnose knower-level, “one”-knowers on
one task are “one”-knowers according to the others (and ditto for
“two”-, “three”-, and “four”-knowers). These are the Give-n task, the
Point-to-n task, and the What’s-on-this-Card task. To illustrate, consider
“one”-knowers’ performance on all three tasks. On Give-n, the child can
give one object when “one” is requested, but grabs a random number of
objects when asked for two, three, four, or any other number on the
child’s count list. On Point-to-n, when asked to point to the card with
one fish, the child points to the card with one when this is contrasted
with a set of any other number. Conversely, if asked for a card with two,
three, or four fish and provided two cards, one with multiple items and
one with one fish, the “one”-knower chooses the card with multiple
items, confirming that the child takes all other words in his count list,
other than “one”, to depict sets that do not contain one individual. The
child chooses at random given a choice between two larger sets (e.g., 2
and 3) when probed with either numeral. On What-on-this-Card, the
child asserts that a card with a single object has one apple, and uses other
numerals randomly for all other set sizes. Very often the child uses “two”
to describe sets of two, three, four, five, six, seven, and eight objects.
Thus, performance on all three tasks consistently reflects the knower-
level assigned on the basis of Give-a-Number alone (for within-child
consistency on Give-n and Point-to-n, see Wynn, 1990; for within-child
consistency between Given-n and What’s-on-this-Card, see LeCorre et
al, 2006).

Besides confirming that CS1 and CS2 are stable representational
systems, these data constrain an account of the learning process. After
having memorized the count list and the count routine, first the child is
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a no numeral knower, although by 24 months of age, many English-
learning children are already “one”-knowers. Being a “one”-knower is a
consistent stage children remain in for six to nine months. They then
become “two”-knowers, remaining so for several more months. They
then become “three”-knowers, and some also become “four”-knowers
before figuring out how the numeral list represents natural number.
Children stay subset-knowers for 1 to 1‰ years. When they become
cardinal principle knowers, they have created a representation of
some positive integers, a numerical representations that transcends core
number representations.

Before the Cultural Construction of Integers: Evidence from Adults

If representations of natural number transcend core cognition, then
before the cultural construction of representations of the positive inte-
gers, adult numerical cognition should be articulated in terms of the
representations in the core systems. Even if this hypothesis is correct, it is
possible that the episode (or episodes) of cultural evolution that led to the
numeral list representation of natural number are lost in historical time,
and, given the global economy, there are no cultures today that do not
have numeral lists. As the linguist James Hurford (1987) reviewed, many
anthropologists in the 19th century described societies whose numerical
language was restricted to the quantifiers, including often words that
were translated as “one” and “two” (which often become transformed
into morphological singular and dual markers) and “many.” Of course,
those anthropologists did not know about core cognition, and they made
no attempt to describe the nonlinguistic number representations of the
people they studied.

Recently, the anthropologist Daniel Everett (2005) described an
isolated Amazonian culture, the Piraha, with a “one, two, many” system
of quantifiers. Their language has explicit quantifiers that express set-
based quantification. Although the Piraha sometimes indicate number
with fingers, they do not have a finger/toe/body counting system.
Rather, they appear to use fingers, and even their words commonly
translated as “one” and “two,” as approximate numerosities. Michael
Frank and colleagues (Frank, Everett, Fedorenko, & Gibson, in press)
elicited quantifiers for sets from one to ten objects, either in ascending
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order (1, 2, 3, . . . ) or descending order (10, 9, 8, . . . ). They found that
the quantifier translated as “one” was used only for sets of one in the
ascending-order elicitation, but it was used for sets from one to six in the
descending-order series. The quantifier translated as “two” was used for
sets from two to ten in the ascending-order elicitation and for sets from
ten to four in the descending-order series. Apparently, these quantifiers
are better translated with relative quantifiers (“a few,” “more than a few,”
“many”), rather than as “one,” “two,” “many.” There is no evidence that
the Piraha have a word in their language that expresses the concept of
“one.”

The psychologist Peter Gordon (2004) described the Piraha’s non-
linguistic representations of number (see also convergent results from
another Amazonian people, the Munduruku, who have a slightly more
elaborate quantifier vocabulary; Pica, Lemer, & Izard, 2004). In a series of
tasks in which Piraha adults were to create sets that matched others in
number, or reach into a can to remove exactly the number objects they
just saw put there, they never used 1–1 correspondence (with fingers or
pebbles) to solve these tasks. Nor did they use number words, of course,
because there are no number words for cardinal values over 2 in their
language. Rather, Gordon found evidence for the two core-knowledge
systems described in chapter 4. For numerosities from 4 to 10, the average
number produced in a match was a linear function of the cardinal value of
the set to be matched, and the standard deviation increased with set size,
satisfying scalar variability. That is, the standard deviation around 10 was
twice that around 5. This is the signature of analog magnitude repre-
sentations. For numerosities of 3 or less, performance was much better,
sometimes at ceiling. Some other representational system subserved
performance at these small numbers—most likely the system of parallel
individuation, perhaps also the analog magnitude system. In sum, the
Piraha clearly use the three core systems described in chapters 5 and 6 in
their quantitative representations of the world, but they provide no
evidence of any numerical representations that go beyond them.

Michael Frank and his colleagues (in press) found that Piraha adults
can easily be induced to create numerical matches on the basis of 1–1
correspondence. Their experiments differed from Gordon’s in that they
provided training with feedback for small sets. With this training, Piraha
adults could create sets in 1–1 correspondence with a target set, up to sets
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of ten, without error, so long as both sets were visible and each aligned
horizontally, one above the other. When the target set was hidden during
the process of set construction, or if one set was aligned vertically and the
matching set was to be constructed horizontally, Gordon’s results were
replicated: analog magnitude representations underlay performance for
sets from four to ten. Clearly, words for numerals, embedded in a count
routine, provide a memory aid, allowing adults to encode the cardinal
values of set and maintain that representation in working memory. This is
a paradigm weak influence of language on thought.

Does the success at the 1–1 correspondence task mean that the Piraha
have a representation of exact cardinal values in the absence of a numeral
list representation of the positive integers, contrary to the conclusions
Gordon drew? No, it doesn’t. Whereas the inability to use 1–1 corre-
spondence to create sets with the same number of elements would be
good evidence that the Piraha lack a concept of the cardinal value of a set,
the capacity to do so falls short of the concept. The resources of set-based
quantification are sufficient to support this ability. Basically, the Piraaha
need only have a concept of all or each. They must create sets where each
balloon is paired with a spool of thread and vice-versa, or where all of the
balloons have corresponding spools and vice versa. Being able to do so
does not mean that they would conceive of the number of items these
two sets share as a particular cardinal value, or ever think to use 1–1

correspondence as a way of representing that cardinal value (as in finger
counting, or marks on a branch, or knots in a string; see Hurford, 1987).
As we will see below, this representational insight is the first step in the
cultural bootstrapping of representations of cardinal value, and these data
provide no evidence that the Piraha have made this step.

Summary: The Challenge of Describing a Discontinuity
in Development Met

To show that conceptual development involves qualitative change, such
that a later conceptual system (CS2) has more expressive power than an
earlier one (CS1), one must provide a characterization of each, demon-
strating the discontinuity. I have shown how the numeral list represen-
tation of number transcends the numerical content of the three systems of
representation with numerical content that are bequeathed to human
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beings by natural selection. Furthermore, if constructing CS2 requires
conceptual change, it should be hard. Unlike learning the meaning of the
plural morpheme, which is a problem of finding a mapping between
antecedently available nonverbal representation and a linguistic expres-
sion, learning the meaning of “seven” requires constructing a new rep-
resentational resource. If this is right, then learning should be a protracted
process, and the initial meanings children assign to the symbols they are
learning the meaning of should be incorrect from the point of CS2. As
the system gets constructed, there should be stable intermediate con-
ceptual structures. And finally, if CS2 is a cultural construction, there
must have been sometime in history cultures who do not yet command it
(although this period may be lost to anthropological or historical record).
The numeral list representation of number exemplifies all of these fea-
tures of conceptual discontinuity.

The Explanatory Challenge

Quinian Bootstrapping

Developmental discontinuities are frequently observed in the course of
mathematical development and in the course of theory change. Chapters
9 through 11 provide further examples from the study of conceptual
development in children and also from historical case studies. I turn now
to the explanatory challenge: what learning processes can create repre-
sentational resources with more expressive power than, or qualitatively
different from, their input?

This explanatory challenge has been extensively discussed by his-
torians and philosophers of science, and many appeal to what are called
“bootstrapping” processes as an explanation for how representational
resources that transcend their input can be created. For example, as
mentioned in previous chapters, Quine offered many different boot-
strapping metaphors when discussing how the child, beginning only with
perceptual primitives, might create representations of “objects as such” as
well as the quantificational capacities to represent individuals and kinds.
He explicitly likens these processes to those involved in theory changes. I
have argued above (chapters 2, 3, and 7) that Quine’s description of the
developmental changes in this case were off the mark. Bootstrapping
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processes are not needed to construct the concept of individual object
from perceptual primitives because this concept is part of core cognition
and is in this sense innate. Nonetheless, I believe his basic insights about
the nature of bootstrapping are right.

As I commented before, the very word “bootstrapping” is a meta-
phor, meant to capture the deep difficulty of the problem. After all, it is
impossible to pull oneself up by one’s bootstraps. Neurath’s metaphor of
building a boat while already in the middle of the ocean also captures the
difficulty of the problem—that while not grounded one must build a
structure that will float and support you. Not grounded in this case means
that the planks one is building the boat with are not interpreted concepts
one already represents. In other metaphors, the learner’s concepts are
partially grounded, as in Quine’s ladder metaphor. Here, one builds a
ladder grounded in one conceptual system until one has a platform that is
self-sustaining, and then one kicks the ladder out from under. And in a
final Quinian metaphor, one is scrambling up a chimney supporting
oneself by pressing against the sides one is building as one goes along.
Quine again captures that the new conceptual system that supports you is
being built as you go along. This metaphor stresses, as does Neurath’s
boat, that the structure one builds consists of relations among the con-
cepts one will eventually attain—it is that structure of interrelations
among the to-be-attained concepts (the sides of the evolving chimney,
the boat itself, the platform from which the ladder can be kicked away)
that serves the crucial bootstrapping role. See Quine (1960, 1969, 1977)
for his own elaboration on Quinian bootstrapping.

Although such metaphors are evocative—of both the problem to be
solved and the solution—Quine never describes in detail how this
learning process operates. These metaphors are hardly satisfying to a
cognitive scientist trying to understand bootstrapping mechanisms. In the
chapters that come, I flesh out the metaphors with processes that are
better understood in computational terms.

Quinian bootstrapping processes require explicit symbols, such as
those in written and spoken language or mathematical notational systems.
The aspect of the bootstrapping metaphor that consists of building a
structure while not grounded is applied as the learner initially learning the
relations of a system of symbols to one another, directly, rather than by
mapping each symbol onto preexisting concepts (Block, 1986). The
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symbols so represented thus serve as placeholders, at most only partially
interpreted with respect to antecedent concepts. This is one essential
component of Quinian bootstrapping. The second essential component
is the process through which the placeholders become interpreted. As
historian and philosopher of science Nancy Nersessian (1992) argues,
these are modeling processes. Often, but not always, processes of ana-
logical mapping are involved. Other modeling processes, such as
abduction, thought experimentation, limiting case analyses, and induc-
tion, all have roles in Quinian bootstrapping.

Two properties of these mechanisms are important. First, they are
not deductive. There are no guarantees in bootstrapping. The structures
that are tentatively posited either work, in the sense of continuing to
capture the observed data that constrain them, or they do not. Second,
they are all problem-solving mechanisms that play a role in thought more
generally. They are bootstrapping mechanisms only when harnessed in
the service of creating a representational resource with more power than
those that are their input.

In the pages that follow, I flesh out how Quinian bootstrapping
works in cases where descriptive work reveals discontinuous conceptual
development, both in childhood and in the history of science. The
childhood cases include bootstrapping the numeral list representation of
natural number, bootstrapping an intuitive theory of matter in which
weight, volume, and density are differentiated (chapter 11), and boot-
strapping a representation of rational number (chapter 11). The historical
cases (chapter 11) include Kepler’s bootstrapping a physics that was the
direct precursor to Newtonian mechanics and Maxwell’s bootstrapping
the physics and mathematics of electromagnetic fields. As each case
unfolds, the abstract characterization of Quinian bootstrapping given
above will be clarified.

Bootstrapping the Numeral List Representation of Natural Number

The output of the hypothetical bootstrapping mechanism is the numeral
list representation of natural number—an ordered list of numerals such
that the first one on the list represents 1 and for any word on the list that
represents the cardinal value n, the next word on the list represents nþ 1.
The successor function is the heart of numeral list representations of
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integers. The numeral list representation of number is characterized by
Gelman and Gallistel’s counting principles (the list is stably ordered;
individuals in a given count are put in 1–1 correspondence with number
words, and the cardinal value of the set is the ordinal position of the word
in the count list).

The problem of how the child builds an numeral list representation
decomposes into the related subproblems of learning the ordered list itself
(“one, two, three, four, five, six . . . ”), learning the meaning of each
symbol on the list (e.g., “three” means three and “seven” means seven),
and learning how the list itself represents number, such that the child can
infer the meaning of a newly mastered numeral symbol (e.g., “eleven”)
from its position in the numeral list. Rather than offering just one
bootstrapping proposal, I will offer two. They differ in the planks of the
process, in what aspects of core cognition are drawn upon. I offer two
proposals to illustrate that it is, in fact, not difficult to imagine how to we
might explain conceptual discontinuities, and to illustrate that it is pos-
sible to bring empirical data to bear on choosing among specific proposals
concerning possible bootstrapping processes.

Each proposal assumes that the child first learns “one, two, three,
four, five . . . ” as a list of meaningless lexical items. This is the no numeral
knower stage documented above. There is no doubt that children have
the capacity to learn meaningless ordered lists of words—they learn
sequences such as “eeny, meeny, miny, mo,” the alphabet, the days of the
week, and so on. Indeed, nonhuman primates have this capacity, and so it
is likely part of innate computational machinery (e.g., Terrace, Son, &
Brannon, 2003). This step in the learning process—learning an arbitrary
ordered list (“one, two, three, four, five, six . . . ”) is a paradigmatic
example of one aspect of Quinian bootstrapping: the meanings of the
counting words are exhausted, initially, by their interrelations, their
relative order in the list. At this point in the process, the verbal numerals
are placeholders with respect to the numerical meaning they will come to
have.

The two bootstrapping proposals differ in terms of the process
envisioned as to how the placeholders come to be interpreted as words
for natural numbers. Both proposals must capture what is known,
empirically, about the earliest stages in number word learning. Both
presuppose that the learning process involves combining antecedently
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available representations. Proposal 1 assumes that analog magnitude
representations of number are the only system of core numerical cog-
nition that is drawn upon in the process. I then present data that deci-
sively undermine Proposal 1. Proposal 2 assumes that the resources of
parallel individuation, together with those of set-based quantification,
underlie the construction of the numeral list representation of number.

Proposal 1: Numeral List Representations Are Bootstrapped from Analog
Magnitude Representations

Dehaene (1997), Wynn (1998), and Gallistel and Gelman (1992, 2000)
have all suggested that analog magnitude representations are the
numerical foundation for numeral list representations of number. There
are several arguments in favor of this proposal. First and foremost, both
numeral list representations and analog magnitude representations
include symbols for cardinal values of sets, and there is no doubt that
eventually a mapping is constructed between verbal numerals and analog
magnitude values (see chapters 4 and 9). These facts make plausible the
hypothesis that the construction of this mapping is what underlies the
learning of the numeral list representational system in the first place. Until
recently, however, nobody has ever attempted to explain how a mapping
from analog magnitudes to the natural numbers might be constructed by
the child, or how constructing this mapping might play a role in the
creation of the numeral list representation of the positive integers. Note
that these are separate problems. It is logically possible that the mapping is
created after children come to understand how counting represents
number and thus plays no role whatsoever in the initial creation process.

As required by the empirical data, on Proposal 1 the child learns the
arbitrary list (“one, two, three, four, five, six . . . ”) and the counting
routine (pointing to objects one at a time, while reciting this list) without
recognizing the numerical significance of these activities. As in all
bootstrapping processes, the initial meanings assigned to the count list are
exhausted by their inter-symbol relations—in this case, strict linear order.
The bootstrapping proposal must then account for how partial meanings
for small numerals are created, for the data show that children assign some
numerical meaning to “one,” “two” and “three” before they figure out
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how the numeral list represents number, and then it must account for
how they accomplish this latter feat.

As detailed in chapter 4, prelinguistic infants compute analog mag-
nitude representations of the cardinal values of sets, at least in some
circumstances, and are sensitive to numerical differences at least in a 2:3
ratio. A problem for Proposal 1 arises immediately in the evidence that
analog magnitude representations of small sets are apparently not readily
computed, at least by infants. In almost every experiment to date, infants’
representations of small sets show the set-size signature of parallel indi-
viduation or the signature of singular/plural representations, rather than
the Weber-fraction signature of analog magnitude representations (see
chapters 4 and 7). To get Proposal 1 off the ground, we must assume that
analog magnitude representations of small sets are easily computed. Given
that this is so for adults (Cordes, Gelman, & Gallistel, 2002), for the sake
of argument, we will grant this is so for 2-year-olds as well. Even with
this liberal assumption, we will see that it is by no means easy to bootstrap
the numeral list system out of analog magnitude representations alone.

Given the description of the subset-knower period of development, I
assume that the first step in the process is that the child learns a mapping
between small numerals (“one,” “two,” and then “three,” in that order)
and states of the accumulator (——, ———, and ———, respectively).
How the child might learn this mapping is far from obvious. If the child
already knows that “one” represents a cardinal value of a set, we may
imagine that garden-variety lexical learning mechanisms are at play. If the
child knows that “one” applies to a cardinal value of a set, then the
hypothesis space for what “one” means is highly constrained. Given that
the symbol, ——, is also a representation of a cardinal value of a set, the
child might simply analyze adult usage and conclude that “one” applies to
those sets that are represented by ——. But how does the child come to
realize that “one, two,” and so on represent distinct cardinal values of
sets?

Gallistel and Gelman (1992) suggested that the role of the numerals
in counting provides a wedge into the problem. They pointed out that
the Meck and Church accumulator model implements a counting rou-
tine, and so the fact that the numeral list is also deployed in counting
helps children discover its significance. As argued above, there are two
problems with this idea. First, as shown in chapter 4, there are reasons to
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doubt the Meck and Church model. Assuming that analog magnitudes
are established in parallel, there is nothing to alert the child to the cor-
respondence between counting and the cardinal values of subsets of the
set being counted. Second, before the child has learned the numerical
significance of any numerals, how does the child know that the count
routine is counting?

It is important to grasp the magnitude of this problem. Remember that
originally the counting routine and the numeral list have no numerical
meaning. Suppose the child is asked “How many” of a set of five objects.
“Howmany” elicits counting as a meaningless routine. Suppose also that he
or she has established an analogmagnitude representation of roughly five. As
the child counts, nothing guides him or her to attend to a set of one, a set of
two, a set of three, a set of four, a set of five during the count. It is only the set
of five that has automatically activated an analog magnitude representation
(if that’s the set the child is indexing). Still, if the child continually practices
the counting routine in response to the parent’s prompt, “Howmany?” the
child will have access to repeated pairings of “one, two” with sets of two,
“one, two, three,” with sets of three, etc. To construct the hypothetical
mapping, the child has to have figured out at least a “last word” rule—that
the last item in the list refers to the numerosity of the set, and this insight is
one thing we are trying to explain. Furthermore, there is evidence that
children figure out a last-word rule only shortly before they become car-
dinal principle knowers; “one”-knowers do not understand that the last
word in a count has any special significance (Fuson, 1988, LeCorre et al.,
2006). Thus, Proposal 1 has a difficult problem of explaining how the child
learns a mapping between “one” and ——.

Perhaps children do not learn the meaning of “one” in the context of
counting. “One” is much more frequent in speech to the child’s input as
a quantifier than embedded in the count routine (Sarnecka, Kamenskaya,
Yamana, Ogura, & Yudovina, 2007). “Can you give me one?” “Would
you like that one?” “I’d like one cupcake.” As Paul Bloom and Karen
Wynn (1997) argued, from the outset numeral production, children
correctly use them in the syntactic positions of quantifiers. The semantics
of quantifiers may help children recognize the numerical meaning of
“one.” As I will argue below, I agree with Bloom and Wynn’s conjec-
ture, but it is not clear how this will help us here. As detailed in chapter 7,
set-based quantification is at the heart of the semantics of quantifiers, and
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analog magnitude number representations do not provide the repre-
sentations drawn upon in set-based quantification (although set repre-
sentations are necessarily the input to analog magnitude representations
of number).

In spite of all these problems, let us assume that the child has made
the mapping that initiates the proposed bootstrapping process—the
mapping between at least some numeral words in the count list and
approximate numerosities represented as analog magnitudes. By the time
the child is a “three”-knower, he or she may even have established some
associative mapping between higher numerals (e.g., “five”) and analog
magnitudes. How then does the child learn how the numeral list
representation and the counting algorithm work? The child might notice
the analogy between two different relations: the temporal relation fol-
lows in the ordered count word list and the numerical relation more than
in the analog magnitude representations. Notice that this is a true analogy.
The order in the count list exhausts its early content, but that order
relation is very different from numerically ordered as represented by
analog magnitudes (greater analog magnitude). To make this analogy, the
child may notice that the magnitude paired with “two” is greater than that
paired with “one”, and that the word “two” follows the word “one” in
the counting routine. Similarly, the child may notice that the magnitude
paired with “three” is greater than the magnitude associated with “two,”
and that “three” follows “two” in the list of number words. And finally,
the child might notice that the magnitude paired with “five” is greater
than the magnitude associated with “two” and that “five” is later than
“two” is the list of number words (if the child has mapped “five” to the
analog magnitude symbol for 5, that is). From these observations, the child
may come to the induction that each number word is associated with a
different numerical magnitude, and that larger magnitudes correspond to
words that come later in the count list. There is no deductive necessity
that the child notice this analogy; as in all bootstrapping processes,
noticing an analogy is a serendipitous matter. If the child entertains the
analogy, it becomes a source of hypotheses that can be confirmed in
additional contexts in which numerals are used by adults and in additional
episodes of counting. Remember, the child counts for one to two years
before figuring out how the count list work.
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However, this is not yet the full numeral list representation, for it
does not represent the arithmetic successor relation between adjacent
items on the numeral list as corresponding to the numerical operation of
adding 1. Although a child might use her analog magnitude system to
discover that numerosity increases monotonically as one proceeds
through the count list, nothing in the analog magnitude system would
appear to inform the child that each count increases numerosity by
exactly 1. On the contrary, because accumulator representations are
compared as are representations of continuous variables, and because
of Weber-fraction considerations, the difference between __(1) and
——— (2) is not experienced as the same as the difference between
———— (3) and ————— (4). And because representations of
adjacent larger numbers are not discriminated, successive discriminable
analog magnitude values for larger numbers are not related by þ 1 at all.

One possible solution to this problem is as follows. In the course of
practicing the counting routine, the child might note that the state of the
accumulator for that corresponds the word “two” ( ____ ) is achieved
when the analog magnitude that corresponds the word “one” is added to
the analog magnitude that corresponds to the word “one” ( __ ), and
similarly for the relations between the analog magnitudes that correspond
to the words for “three” and “two,” and for “four” and “three”—in each
case the analog magnitude value that corresponds to the numeral next in
the list is achaieved by adding the analog magnitude that corresponds to
“one” to that that corresponds to the numeral immediately preceding it
in the list. This would require that 2-year-olds reliably distinguish analog
magnitudes in the ratio of 4:3, which has not yet been shown, but let’s
grant that to the child for the sake of argument. This regularity, if
noticed, may be enough evidence for an induction that there are two
states of the accumulator that corresponds to both n and n þ 1, for any n,
even if they cannot be discriminated. Once this insight has been
achieved, the bootstrapping process is complete.

Reasons to Doubt Proposal 1
As currently formulated, Proposal 1 fails to address many of the questions
we want to resolve, including the crucial one of how the child creates the
initial mappings that get the process started. More important, the pro-
posal faces two critical empirical challenges. First, it offers no explanation

Beyond Core Cognition: Natural Number 313



for the well-established findings that children begin by learning what
“one,” means and take “two, three, four, five . . . ” to contrast with
“one,” well before they learn how “two, three, four, five . . . ”contrast
with each other. Nothing in analog magnitudes makes the distinction
between ——(1), on the one hand, and ———— (2), ———— (3),
—————— (4), . . . , on the other hand, particularly salient, such that
all states of the accumulator greater than one should be treated alike.

Even more important, Proposal 1 absolutely requires that before
children work out how the numeral list represents number, they have
mapped some of the numerals in the count sequence onto approximate
analog magnitudes. It also requires that the inductions children make in
the process of constructing the counting principles include the general-
ization that numerals later in the list represent larger numbers, where
“larger numbers” means larger analog magnitudes. There is now good
evidence (reviewed below) that neither of these requirements is met.
Children apparently integrate numerals with analog magnitude repre-
sentations some six months after they have learned how counting
represents number. Thus, Proposal 1 cannot be right.

Two large empirical projects have sought evidence that analog
magnitudes are mapped to numerals by subset-knowers—that is, by
children who have yet to figure out the counting principles. Any data
showing that subset-knowers could estimate the number of elements in a
set larger than four without counting would provide unequivocal evi-
dence for mappings between analog magnitudes and large numerals,
because parallel individuation cannot support representations of sets
greater than four. Kirsten Condry and Elizabeth Spelke (2008) and also
Mathieu LeCorre and I (2007) have sought such data. Each group studied
2- and 3-year-olds early in the process of learning to count—those who
knew only what “one” meant, or only “one” and “two,” or at most
“one, two” and “three” (i.e., children who were subset-knowers as
diagnosed by Wynn’s Give-a-Number task). Condry and Spelke showed
children two cards, one with four objects on it and one with eight, and
asked “Which one has four?” or “Which one has eight?” Children were
at chance. Because even 6-month-olds can discriminate sets in numerical
ratios of 1:2, the fact that children could not tell which of these sets had
“eight” and which had “four” shows that they had not mapped these
numerals to analog magnitude representations of approximately eight, or
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approximately four, respectively. Providing data convergent with this
conclusion, LeCorre showed children cards with from one to ten dots
on them for just a few seconds (too fast for counting) and asked
children to give an estimate of how many dots were on each card. For
all subset-knowers the slope of the average numeral produced as a
function of set size in the range of five to ten was 0. That is, subset-
knowers used numerals randomly, with no tendency whatsoever to
produce higher number words for larger set sizes. Thus, there is no
evidence that children map any numerals in the unambiguous range of
analog magnitudes onto analog magnitudes before they become cardinal
principle knowers. Nor is there any evidence that they have learned a
generalization that numerals later in the list pick out larger sets (as deter-
mined by analog magnitude representations of number), for if they did,
they should produce larger numerals for sets of ten than for sets of five.

The data summarized above are from subset-knowers. Perhaps
children make this mapping just as they become cardinal principle
knowers, and thus it is difficult to find subset-knowers who have done so.
If so, all cardinal principle knowers, at least, should show evidence of
understanding that numerals later in the list pick out higher analog
magnitudes. To explore this question, LeCorre included 72 young car-
dinal principle knowers (3- to 5-year-olds) in the estimation task
described above. The distribution of slopes relating the average numeral
produced as a function of set size between five dots and ten dots was not
normal—it reflected two groups of children. One had slopes centered
around 0, just as the subset-knowers have, and the other had slopes
centered around 1, just as adults do (see Figure 8.1). The latter group—
those with slopes of 1, estimate “five” for sets of five, on average, and
“ten” for sets of ten, just as do adults. These children have clearly mapped
numerals to analog magnitudes (remember, the cards were flashed too fast
for them to count), and so LeCorre called these children “mappers.”
LeCorre separated the cardinal principle knowers who gave the same
numerals for sets of six as for sets of eight and ten (“nonmappers”) from
those whose average numeral produced tracked set size (mappers); Figure
8.2 plots the estimates for each set size for each group. The average age of
the 31 cardinal principle knowers who were nonmappers was 4:1, and the
average age of the cardinal principle knowers who were mappers was 4:6.
Both groups of cardinal principle knowers fully understood how
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counting represents number; they all counted to produce sets of any size
asked for, and if they made mistakes, all knew how to correct immedi-
ately. Apparently, children do not map larger numerals in their count list
to higher numerals until about six months after they have figured out
how counting represents the positive integers.

These data absolutely rule out the possibility that mapping numerals
in the range of 5 to 10 to analog magnitudes plays any role in the
construction of the numeral list representation of natural number.
LeCorre’s data establish another previously unknown fact about the
construction process. LeCorre found several “four”-knowers among his
subset-knowers, and he also found that many “three”-knowers were well
on their way toward mapping “four” onto sets of 4 as well. As is obvious
from Figure 8.2, all cardinal principle knowers, both mappers and non-
mappers, have mapped the numerals “one,” “two,” “three,” and “four”
onto core cognition systems. Thus, although “four”-knowers are
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relatively rare, it seems that children do not induce the counting prin-
ciples until they learn the numerical meaning of “one,” “two,” “three,”
and “four,” for all cardinal principle knowers have done so. Numerical
meanings of “one,” “two”, “three” and “four” and nothing more
underlie the construction of the counting principles.

What might these meanings be? Might Proposal 1 be correct, with the
emendation that only analog magnitude representations of sets of
1 through 4 are mapped to numerals before the induction? LeCorre’s data
bear against this proposal as well. Proposal 1’s crucial induction on the way
to figuring out the successor function is that numerals later in the list pick
out larger sets. Even though this might be induced from a mappings
between the first four numerals and analog magnitudes, the effect of this
generalization, if known, should be seen on the estimation task. That is,
children who know this principle should give larger numerals for larger
sets throughout their whole count sequence. All cardinal principle knowers
in LeCorre’s sample could count to 10; many could count to 20 or more.
Yet the nonmappers failed to provide larger numerals for larger sets.
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line) and CP-non mappers (solid line).
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Two final empirical considerations militate against Proposal 1. First,
Proposal 1 provides no explanation for why no subset-knowers have
mapped “five” or “six” or “ten” onto analog magnitudes before inducing
the counting principles. Whatever associative process supports mapping
“two” to analog magnitudes, or “four” to analog magnitudes, should be
available to support mapping “six” or “ten” to analog magnitudes as well.
To be sure, higher numerals are less frequent, but the very striking dis-
continuity at “four” has no ready explanation on Proposal 1.

The last empirical consideration is even more conclusive. The sig-
nature of analog magnitude representations is scalar variability; the ratio
of the standard deviations for the estimates of each set size is proportional
to the mean estimate for that set size. And indeed, LeCorre found scalar
variability in the estimates of mappers in the five- to ten-item range. The
ratio of standard deviation to mean estimate was about .25 for set sizes of
six, eight, and ten, which is very close to the adult level (Cordes et al.,
2001; Whalen, Gallistel, & Gelman, 1999). If the numerical meanings of
small numerals are also subserved by analog magnitude number repre-
sentations, then estimates in the small set range should also display scalar
variability. Children’s estimates of small sets did display variability, but
not scalar variability. Standard deviations of the estimates for sets of one to
four dots were not proportional to the mean estimates. For example, for
cardinal principle knowers who were mappers, the SD/M for estimates of
sets with one object was 0, as it was for sets of two objects. For sets of
three objects, it was .01, and for sets of four objects, it was .12. It did not
reach .20 (the value of scalar variability observed for sets between five and
ten) until a set size of five. This pattern of increasing values of SD/M for
estimates of sets from one to four held up within each of the three groups
(subset-knowers as well as the two groups of cardinal principle knowers)
and is not that predicted by the hypothesis that analog magnitude
representations provide the numerical meaning for the numerals. Rather,
it is that predicted by the hypothesis that representations deploying
parallel individuation underlie success (LeCorre & Carey, 2007; Vogel,
Woodman, & Luck, 2001).

Although these considerations conclusively rule out Proposal 1, the
hypothesis that numeral list representations are ontogenetically grounded
in analog magnitude representations may still be correct. A different
learning process might exist that would avoid the pitfalls of Proposal 1.
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Indeed, Gelman and Lucariello (2002) sketched an alternative in which
the initial mapping is between the count list as a whole and analog
magnitudes as a whole. I do not consider this proposal here because it,
too, requires that the child have access to the generalization that numerals
later in the list refer to larger cardinal values as specified by analog
magnitudes is available as soon as the child has constructed this initial
mapping, a generalization not made until some months after the child has
induced the cardinal principle (Condry & Spelke, 2008; LeCorre &
Carey, 2007). As will be clear in chapter 9, I am sympathetic to Gelman
and Lucariello’s proposal for how analog magnitudes are integrated with
the numeral list; I just do not believe that this integration is the key to the
initial creation of the numeral list representation of natural number.

My goals in considering Proposal 1, and then rejecting it, were
threefold. First, I issue a challenge: those who believe that numeral list
representations are bootstrapped out of analog magnitude representations
must characterize a process through which this could be accomplished.
Proposal 1 is my best shot. Second, I offered Proposal 1 as an example of a
Quinian bootstrapping process that could do the trick. Like all Quinian
bootstrapping, it involves creating a placeholder structure whose meaning
is initially exhausted by inter-symbol relations, and it involves modeling
processes such as analogy and inductive inference. As Proposal 1 shows, it
is not difficult to flesh out bootstrapping proposals that could underlie an
important developmental discontinuity. Third, with specific proposals in
hand, it is not difficult to evaluate them empirically. If those who believe
that analog magnitude number representations underlie the learning of
the numeral list can propose a different learning mechanism, it too could
be put to empirical test.

What Concepts Underlie the Meanings of “One-” to “Four” for
Subset-Knowers?
LeCorre’s data suggest that all children have created numerical meanings
for the first four verbal numerals before they figure out how the numeral
list represents number. His data also suggest that these meanings are
unlikely to be analog magnitudes. What might they be? The fact that
they are restricted to representations of sets of one, two, three, and four
objects raises the obvious possibility that parallel individuation underlies
their meanings. Although this is a tempting suggestion, it cannot be that
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the parallel individuation system that is part of core cognition supports
the meanings of the first four numerals by itself. This is because the
symbols in this system represent specific individuals. If the representations
in this system are modeled as in Figure 4.9 (see chapter 4 for evidence this
is so), the working-memory models that make up this system of repre-
sentation contain no symbols for quantifiers or for numerals.

What could “one” for a “one”-knower mean, or “one” and “two”
for a “two”-knower? What is the format of the mental representations
that underlie the numerical meanings subset-knowers have created for
numerals? What is the process through which a given set is assigned
one numeral rather than another? The answer we give to this question
must be constrained by what we know about the decidedly unadult
nature of the meanings of numerals early in the learning process. That the
only meanings assigned are for sets of one through four definitely
implicates parallel individuation as playing some role. In addition, the
particular partial meanings children create implicate set-based quantifi-
cation as well.

In chapter 7 we saw that prelinguistic infants and nonhuman pri-
mates are endowed not only with parallel individuation and analog
magnitude representations but also with a set-based system of quantifi-
cation that underlies the quantificational resources of natural language. In
some circumstances that do not favor parallel individuation, both non-
human primates and 15-month-old infants make a singular/plural dis-
tinction. Furthermore, by 22 months of age, English-learning children
have learned some of the syntactic/morphological symbolic expressions
for it. The quantifier “a” is of special interest, as its semantic force in many
contexts overlaps the meaning of “one.” Indeed, in many languages the
word for the singular indefinite determiner is the same as the first word in
the numeral list.

Semantic treatments of quantifiers require the abstract concepts
individual and set. The classic treatment of the singular/plural distinction
assumes individuals in some domain and a join operation that combines
individuals into sets (see Figure 7.1; Chierchia, 1998; Link, 1987). Natural
language quantifiers explicitly distinguish atoms—the individuals on the
bottom of this semi-lattice—from the sets that are created by joining
atoms. Singular quantification is used when a single individual in the
domain is referred to, and plural quantification is used when referring to
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any set containing more than one individual. Chapter 7 argued that
children are endowed with the syntactic category of quantifiers, with the
syntactic/semantic distinction between singular and plural, and with the
associated semantic notions of “set” and “individual.” These notions,
together with computational resources of parallel individuation, may
provide the initial meanings of the first four numerals.

This suggestion was first made by Paul Bloom and Karen Wynn
(1997), who noted that the partial meanings assigned to numeral words
by subset-knowers are equivalent to quantifier meanings. For example,
children’s responses both on Give-a-Number and What’s-on-this-Card
show that “one” for a “one”-knower is equivalent in meaning to “a,”
and all other numerals are analyzed as if they meant “some.” That is,
when asked to give the experimenter one fish, a “one”-knower hands
over one fish, but if asked for any other numeral’s worth, the child merely
grabs a plurality. And when asked to say, without counting, how many
bees there are on a card that could contain anywhere from one to eight
bees, “one”-knowers say “one” for one bee and “two” for sets from two
to eight bees (LeCorre et al., 2006; LeCorre & Carey, 2007; see also Clark
& Nikitina, in press, for evidence from diary studies and elicited pro-
duction that that English-learning children initially analyze “two” as a
plural marker).

Bloom and Wynn (1997) pointed out that if children analyzed
numerals as quantifiers, and if there were innate or learned expectations
about the semantics of quantifiers in place, this would help them break
into the meanings of the numerals. They then went on to show that from
the very beginning of numeral use, children have indeed analyzed them
as quantifiers. They showed that the speech that children hear contains
both quantifiers (determiners, “all,” “some,” etc.) and number words that
appear in the quantifier position (e.g., “all brown cows, some brown
cows, each brown cow, three brown cows”), and children’s own speech
respects the adjective-quantifier distinction at two years of age, in
number words and in other quantifiers as well. In addition, “a” is one of
the first quantifiers children learn, before the child’s second birthday (see
chapter 7). These observations, along with the nature of the partial
meanings subset-knowers assign to numerals, suggest that young chil-
dren’s initial meanings assigned to number words are constrained by the
semantics of quantifiers in natural languages.
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Barbara Sarnecka and her colleagues (2007) have recently provided
striking confirmation of this hypothesis. If quantifier meanings are sup-
porting subset-knowers’ initial hypotheses about numeral meanings,
those meanings should be affected by the nature of number marking in
their own language. As we saw in chapter 7, English-learning children
have worked out the meaning of the contrast between “is a blicket” and
“are some blickets” by 22 months of age. Children who have learned this
aspects of number marking already have available language-relevant
hypotheses to support the meaning of “one.” Classifier languages, like
Mandarin and Japanese, largely lack singular/plural marking, and so
children learning such languages will not learn morphemes that mean
“singular” and “plural.” If explicit quantifier knowledge structures the
hypothesis space available for positing the first meanings for verbal
numbers, children learning classifier languages may become “one”-
knowers much later than children learning a language that marks the
singular/plural distinction morphologically (such as English or Russian).
This is what Sarnecka found. She showed that Japanese, Russian, and
English children learn to recite the count list in the counting routine
equally early, and that children in all three language groups get equivalent
input with respect to parental use of numerals. Yet, when she adminis-
tered Wynn’s Give-a-Number task to samples of 2:9- to 3:6-year-olds
learning Japanese, English, and Russian, she found the Japanese sample to
have markedly more no numeral knowers than the other two samples.
Japanese children are slower to become “one”-knowers; they remain
longer in the stage in which the numeral list is a meaningless list. Being
later to break into the system ripples through all the stages—there are also
fewer “two-”, “three”- and cardinal principle knowers among the
Japanese than the other two samples.

Japanese has two verbal numeral lists and children are exposed to
both. Perhaps this makes learning the meaning of number words harder.
To address this possibility, and to provide further evidence that it may be
the lack of morphological number marking that’s slowing the children
down, Peggy Li and her colleagues (Li, LeCorre, Jia, & Carey, 2008)
repeated Sarnecka’s study with Mandarin-learning children in China and
Taiwan. Mandarin is also a classifier language with virtually no singular/
plural marking on nouns or verbs in the child’s input, and Mandarin has
only one count list. Li et al. found that Mandarin learners become “one”-
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knowers six to nine months later than do English-learning children, in
spite of evidence from other studies that they learn the numeral list at
comparable ages.

These data on the effects of language on numeral learning provide
striking evidence for the proposal that linguistic quantifier representations
play a role in the earliest learning of the meaning of numerals. If this is so,
learning still other linguistic number marking systems (e.g., singular/
dual/plural) might interact with the initial partial meanings children
assign to spoken numerals. As of yet, nobody has systematically studied
this issue, but I know of one relevant study of the acquisition of linguistic
number marking in a language quite different from English—Palestinian
Arabic. Palestinian Arabic has a dual marker system and also distinguishes
plural morphology and collective morphology. In a study of children’s
learning number marking in Palestinian Arabic, Ravid and Hayek (2003)
found that 3-year-olds often used the numeral translated “two” instead of
the dual when referring to sets of two objects, whereas older children
were unlikely to do this. This finding is consistent with the suggestion
that “two” is initially a dual marker.

Furthermore, there is evidence from historical linguistics that the
number words have their origins as quantifiers. The linguist James Hurford
(1987) summarized the evidence that, historically, the small-numberwords
have a different origin than the larger ones, an origin that implicates them in
thebusiness of nounphrase syntax. In all languageswith richmorphology, for
example,“one” ismorewidely inflected than is “two,”which in turn ismore
widely inflected than “three.” “Four” or “five” and higher are equally, and
less, inflected than the first three count words.

What these data suggest is that, historically, the initial meaning of
“one” overlapped substantially that of the singular determiner “a,” and
that the initial meaning of “two” overlapped substantially that for dual
markers in languages that have them, and the initial meaning of “three”
overlapped substantially that for a trial marker. But what might the
representations that underlie the meanings of the singular determiner,
dual markers, and trial markers be? What is their format, and what is the
process through which sets are assigned numerals? And why is this system
of representation limited to representations of sets of one through four
objects? LeCorre and I proposed a system of representations that could
underlie the meanings of numerals for subset-knowers that draw on the
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resources both of set-based quantification and parallel individuation, and
thus we dubbed it “enriched parallel individuation” (LeCorre & Carey,
2007; see Mix, Huttenlocher, & Levine, 2002, for a similar proposal).

The parallel individuation system that is part of core cognition
creates working-memory models of sets. The symbols in these models
represent particular individuals—this box, which is different from that
one. However, as detailed in chapter 4, even when drawing on parallel
individuation alone, infants have the capacity to represent two models
and compare them on the basis of 1–1 correspondence. For representa-
tions of this format to subserve the meanings of the singular determiner or
the numeral “one” for subset-knowers, the child may create a long-term
memory model of a set of one individual and map it to the linguistic
expression “a” or “one.” Similarly, a long-term memory model of a set of
two individuals could be created and mapped to the linguistic expression
for a dual marker or “two,” and so on for “three” and “four.” These
models could contain abstract symbols for individuals ({i}, {j k}, {m n o},
{w x y z}) or they could simply be long-term memory models of par-
ticular sets of individuals ({Mommy}, {Daddy Johnnie} . . . ). What
makes these models represent “one” “two” and so forth is their
computational role. They are deployed in assigning numerals to sets as
follows: The child makes a working-memory model of a particular set he
or she wants to quantify {e.g., cookie cookie}. He she then searches the
models in long-term memory to find that which can be put in 1–1

correspondence with this working-memory model, retrieving the
quantifier that has been mapped to that model.

All of the computational resources required for enriched parallel
individuation are known to be available to prelinguistic infants. Pre-
linguistic infants create working-memory models of at least two separate
sets and compare these on the basis of 1–1 correspondence (chapter 4).
They also treat sets as objects, quantifying over them as required by
natural language quantifiers (chapter 7). Still, it is important to stress that
the long-term memory models that support the meanings of singular,
dual, and triple markers, as well as the child’s first numerals, are not
themselves part of core cognition. These must be created in the course of
language learning, and for English-learning children this process unfolds
for a period of over a year. This why we designate the hypothesized
system of representation “enriched parallel individuation.”
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Proposal 2: Numeral List Representations Are Bootstrapped from
the Representations of Enriched Parallel Individuation

In Proposal 2, as in Proposal 1, the two important planks of the boot-
strapping process are constructed in parallel, largely independent of each
other. As in Proposal 1, the child learns the numeral list and the count
routine as a numerically meaningless game. As in Proposal 1, the child
also creates numerical meanings for some numerals—in this case “one”
through “four.” In Proposal 2, these meanings are supplied by enriched
parallel individuation.

I envision something like the following for how concepts of enri-
ched parallel individuation are constructed: English-learning children first
learn the distinction between singular and plural—“a block” versus
“some blocks”—by noting that “a block” applies when the speaker is
referring to an array that contains only a single individual, whereas “some
blocks” applies when the speaker is referring to an array that contains
more than one individual. When learning the singular/plural distinction,
children must treat sets of one—the atoms on Figure 7.1—differently
from sets of two or three (within the limits of parallel individuation) and
from sets of four to eight (beyond it); see chapter 7. This principled
distinction underlies the learning of the syntactic marker “a” for the
semantic notion singular, which applies to atoms—single individual files.
The semantic notion plural (and the syntactic marker “-s”, or “are” versus
“is,” and quantifiers like “some” when applied to sets of individuals)
refers to sets of multiple individuals, not distinguishing whether their
number is within the range of parallel individuation or outside it. Thus,
learning the plural morpheme might alert the child to the possibility that
sets outside the range of parallel individuation should be treated, for some
linguistic purposes, in the same manner as sets within the range of parallel
individuation.

Second, children learn that the word “one” is a quantifier that picks
out individuals by noting that it applies in the same situations as “a,”
which they have already learned. I propose that the representation that
underlies the meaning of “a” and “one” is a model stored in long term
memory{atom}, and any working memory model of a single individual
the child wants to refer to is called “a” or “one” because the set con-
taining that single individual can be put in 1–1 correspondence with the
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working memory model. Children also learn that the other number
words are quantifiers that pick out sets of individuals, by noting that they
apply in the same situations as “some,” always in the presence of the
plural marker. This step corresponds to the stage discovered by Wynn in
which children know the meaning of “one” and know that all the
number words above “one” refer to numerosities above one but do not
know which numerosities are picked out by each word. It is at this stage
of the process that some children misinterpret “two” as a general plural
marker (Clark & Nikitina, in press; LeCorre et al., 2006; LeCorre &
Carey, 2007). Thus, one of the major embarrassments for Proposals 1—
the fact that children treat “two, three, four, five, . . . ” as rough syno-
nyms, referring to plurality, in spite of the fact that analog magnitude
representations makes no principled distinction between one and more
than one—is one of the motivations for Proposal 2.

Third, children learn that the word “two” applies only to a subset of
plural representations: those in which the speaker is referring to an array
that can be put into 1–1 correspondence with a set that contains two
individual files. The word “two” is mapped to a model in long-term
memory {j k}, which is deployed as one of the candidate sets to match
attended sets to for the purpose of quantifier selection. The same
representations underlie the meanings of dual markers in languages that
have them. Later, children create a model in long-term memory that
analogously supports the meaning of “three,” again supported by
whatever processes allow children to construct meanings for trial markers
in languages that have them. Finally, as LeCorre has shown, they also
create a long-term memory model to support the meaning of “four.”
Note that up through this step, the count list and the counting routine
play no role in the process of children’s constructing numerical inter-
pretations of the first four numerals.

Independently of the above steps (though perhaps concurrently with
them), children learn the count sequence as a meaningless routine. They
note the identity of the words “one, two,” “three,” and “four” which
now have numerical meaning, and the first words in the otherwise
meaningless counting list. Also, in the course of counting, children dis-
cover that when an attended set would be quantified with the dual
marker “two,” the count goes “one, two,” and when an attended set
would be quantified with the trial marker “three,” the count goes “one,
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two, three.” The child is thus in the position to notice that for these
words at least, the last word reached in a count refers to the cardinal value
of the whole set.

At this point, the stage is set for the crucial induction. The child must
notice an analogy between next in the numeral list and next in the series
of models ({i}, {j k}, {m n o}, {w x y z}) related by adding an individual.
Remember, core cognition supports the comparison of two sets simul-
taneously held in memory on the basis of 1–1 correspondence, so the
child has the capacity to represent this latter basis of ordering sets. This
analogy licenses the crucial induction: if “x” is followed by “y” in the
counting sequence, adding a individual to a set with cardinal value x
results in a set with cardinal value y. This generalization does not yet
embody the arithmetic successor function, but one additional step is all
that is needed. Since the child has already mapped single individuals onto
“one,” adding a new individual is equivalent to adding one.

Proposal 2 has several advantages over Proposal 1. It makes sense of
the actual partial meanings children assign to number words as they try to
fill in the placeholders. The semantics of quantifiers explain these facts. It
makes sense of the fact that subset-knowers acquire the cardinal meanings
of “one” “two” “three” and “four,” and no other numeral, for only sets
of these sizes are representable by models of the sets of individuals held in
parallel in working memory, thus to be matched via 1–1 correspondence
to long-term memory models of sets of one, two, three, and 4 indivi-
duals. It makes sense of the patterns of noise in children’s choices of
numerals to apply to sets of one through four; again, parallel individu-
ation explains this fact.

We sought an answer to two questions. First, how do children assign
numerical meanings to verbal numerals, and how do children learn how
the list itself represents number? And second, how do they learn the
counting principles? The bootstrapping proposals—both of them—answer
both of these questions, albeit differently from each other. Proposal 2’s
answer is that the meanings of “one” through “four” are acquired just as
quantifiers in natural languages are—as quantifiers for single individuals,
pairs, triples, and quadruples. These words, as well as higher numerals, also
get initial interpretations as part of a placeholder structure, the count list
itself, in which meaning is exhausted by the fact that the list is ordered. The
bootstrapping process explains how children learn how the list itself

Beyond Core Cognition: Natural Number 327



represents number, which in turn explains how they assign numerical
meaning to numerals like “five” and “seven.”When children first become
cardinal principle knowers—that is, when they are nonmappers who
have not yet integrated the count list with analog magnitude number
representations—the meaning of “five” is exhausted by the child’s mastery
of counting. The counting principles ensure that the content of “five” is
one more than four, and the meaning of “seven” is one more than six,
which is one more than five, which is one more than four.

Summary: Bootstrapping the Numeral List Representation
of Natural Number

I have argued here that the numeral list representation of number is a
representational resource with power that transcends any single repre-
sentational system available to prelinguistic infants. When the child, at
around age 3‰, has mastered how the count sequence represents number,
he or she can in principle precisely represent any positive integer. Before
that, he or she has only the quantificational resources of natural languages,
parallel individuation representations that implicitly represent small
numbers, and analog magnitude representations that provide approxi-
mate representations of the cardinal values of sets.

Additionally, I have taken on the challenge of specifying a learning
mechanism that can underlie developmental discontinuities—Quinian
bootstrapping. I provided two possible routes through which explicit
numerals for integers might be learned. Both involve, but are not
exhausted by, garden-variety learning processes: association, the
mechanisms that support language learning, and so on. Both are boot-
strapping mechanisms. Like all Quinian bootstrapping processes, they are
nondeductive. They both involve noticing analogies and making
inductive and abductive leaps. Proposal 1 depends on an analogical
mapping between “later on the numeral list” and “larger number as
represented by analog magnitudes.” Proposal 2 depends on the analogy
between next on the numeral list and next state after additional individual
has been added to a set. Both proposals require that the child recognize,
one way or another, that successive numerals among “one,” “two,”
“three,” and “four” refer to sets that are related byþ1, and induce that all
successive numerals in the count list are so related.
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Both proposals exemplify one of Quine’s bootstrapping principles:
an explicit structure is learned initially without the meaning it will
eventually have, and at least some relations among the explicit symbols
are learned directly in terms of each other. The list of numeral words and
the counting routine are learned as numerically meaningless structures.
Whereas order is essential to numerical representations, ordered relations
in themselves are much more general and thus not uniquely numerical.
In both proposals the ordering of the number words exhausts their initial
representational content within the counting routine and plays a role in
the mappings and inductions of each proposal.

Both proposals depend on integrating previously distinct repre-
sentations. This is where the new representational power comes from.
The concepts set, individual, singular, plural, dual, and triple are explicitly
available to support the learning of quantifiers, but are only implicit or
absent in parallel individuation and analog magnitude representations. In
analog magnitude representations, numerical distinctions are explicitly
symbolized that are unmarked in natural language quantifiers or parallel
individuation (e.g., 35 vs. 40), and although analog magnitude repre-
sentations may play no role in the child’s learning how counting
represents number, they are integrated with counting some six months
later (LeCorre & Carey, 2007; see chapter 9). And the representations that
articulate the parallel individuation system contain computations that
embody the successor function, whereas neither of the other systems
does. The bootstrapping process (which depends on analogical mapping)
creates an explicit representational system with all of these properties, a
representational system that maps onto each of its sources and thus serves
to integrate them.

An Aside: Can Animals Create a Numeral List Representation of Number?

Language plays two crucial roles in Proposal 2. First, the system of set-
based quantification that underlies the meanings of quantifiers provides
some of the hypotheses children entertain for the partial meanings of
numerals as they try to fill in the placeholder symbols. As shown in
chapter 7, Rhesus macaques (and presumably other nonhuman primates
as well) have the capacity for set-based quantification and represent the
singular/plural distinction. Of course, they will have no LAD that
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constrains general hypotheses about the role of quantifiers in noun
phrase semantics. If the latter abilities are necessary, no other
animal should be able to build a numeral list representation of natural
number. Second, all bootstrapping processes require language or some
other explicit symbols to provide a system of placeholder symbols
with at least some relations among them directly represented. No
other animal creates explicit symbols, and thus, if bootstrapping
processes such those detailed here are required to create representations
of natural number, there is a second reason to expect no other animal to
do so.

Contrary to these predictions, several studies have claimed success at
teaching numerals to nonhuman animals, ranging from an African grey
parrot to several chimpanzees. These are heroic and extremely inter-
esting experiments that certainly show that nonhuman animals can learn
the mapping between numerals (external symbols for cardinal values of
sets) and nonlinguistic number representations beyond the range of
parallel individuation. The question is what the animals have learned,
and how. Evidence that they create these mappings as do children would
undermine the claim that Quinian bootstrapping is necessary for the
construction of representations of the positive integers. On the contrary,
it is likely that the process underlying this achievement is nothing like the
process children go through. Years of operant condition was required in
each case, and there is no evidence that any animal has induced how the
numeral list works (Boysen & Bernston, 1989; Matsuzawa, 1985, Pep-
perberg, 1987).

For illustration, consider one case: Matsuzawa’s (1985) chimpanzee,
Ai. Ai can now enumerate up to nine dots without error, showing the
same RT functions as do normal adults. Also, Ai knows the ordinal
relations among the numerals; she will touch numerals displayed on the
screen (e.g., “6, 3, 8, 1”) in order of increasing numerical values. Thus,
there is no doubt Ai has learned a mapping between numerals (written
ones in this case) and some nonlinguistic representations of cardinal values
of sets ranging from one to nine.

In her training regimen, Ai was taught the numbers in succession. She
first taught to associate “1” with sets with one individual and “2” with sets
with two individuals. After this mapping had been mastered, Ai was
introduced to the symbol “3” and sets with three individuals. She
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maintained her high performance on “1” but was at chance at discrimi-
nating “2” and “3,” indicating that she had first associated “2” with values
that included at least two and three. This is reminiscent of the child’s
“one”-knower stage, where “two” is taken as general plural marker, and is
supported by the nonlinguistic set-based quantification system docu-
mented by David Barner and colleagues (see chapter 7). After thousands of
additional trials, Ai mastered “1, 2, 3” and then “4” was added to the set.
She maintained her high performance on “1”and “2,” but now fell to
chance discriminating the sets that matched “3” and “4.”, indicating that
she had previously associated “3 with values that included at least three
and four. This is reminiscent of the child’s “two”-knower stage, and
suggests that linguistic dual markers also draw on capacities available to
nonhuman primates. After thousands of additional trials, she mastered “1,
2, 3, 4,” and when introduced to “5”, showed that she had taken the
symbol “4” to apply to sets both with four and five members (as would
“three”-knowers learning natural language numerals). As her training
progressed to higher numerosities, however, Ai never made the induction
that each number symbol added to the set was to be associated with a
precise numerosity. As each new symbol was introduced, up to “9,” she
was always at chance between the last item learned “n” and the newly
introduced item “n þ 1”, indicating that she had previously learned that
“n” was to be associated with at least n and n þ 1. No child has ever been
seen to continue this pattern of learning beyond “four.”

Ai never made the relevant induction, even though she certainly
eventually mapped the first nine numerals onto the first nine numbers.
Since there is no evidence that Ai ever mastered how the list represents
number, it seems likely that she did not really construct a numeral list
representation of number. Still, an important question is how she did
learn what she did, for her representations of number do go beyond
either object-file representations, exceeding as they do the intrinsic limits
of parallel individuation, and they also appear to be symbols for precise
numerosities up to nine. I can only speculate as to how she and other
animals achieve this, but my guess is that Ai probably created an asso-
ciation between numerals and analog magnitude representations. Ai’s
sensitivity, in the ratio of 8:9, only slightly better than that of unpracticed
human adults’ analog magnitude number representations (7: 8; Barth
et al., 2003). With extensive training, sensitivity to finer numerical
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distinctions may be accomplished in various ways—for instance, the noise
in the analog magnitude representations might be reduced by changing
the parameters of the perceptual process that computes numerical mag-
nitudes, as occurs in other cases of training of psychophysical discrimi-
nation thresholds. If this is right, Ai’s failure to induce the successor
relation gives us one more reason to suspect that human children’s
construction of the numeral list representation does not depend solely on
the analog magnitude representations of number.

Why did Ai fail to make the induction children do?Well, she wasn’t
really given the chance, and neither has any other animal trained to
associate numerals with nonverbal number representations. Remember
that nonhuman primates, like young children, can learn meaningless
lists. But in none of the training studies with nonhuman animals were the
animals taught the list itself. Thus, even if they had the capacity for
Quinian bootstrapping, they did not have the placeholder structure
available to support the induction. Although training animals numeral
representations requires several years of work, with several hours of
training a day, I fervently hope that somebody will repeat Matsuzawa’s
study, having trained the chimpanzee on “1, 2, 3, 4, 5, 6, 7, 8, 9” as a
meaningless ordered list first. That is, Ai may have failed to make the
induction because she did not have planks of the bootstrapping process
in place.

If I were to bet, I’d bet against this alternative training regime’s
making a difference. That is, I very much doubt that nonhuman animals
have the capacity for Quinian bootstrapping. I doubt that they have the
capacity to use a symbolic structure as a placeholder structure and to
engage in the modeling techniques needed to combine previously
distinct representational systems. My suspicion is that nonhuman ani-
mals lack a crucial tool for combining previously distinct mental
representations: They cannot use lexical identity as a clue that previ-
ously unrelated representations actually capture the same aspects of
reality. Although many animals appear to have very similar capacities to
those of humans to track objects, represent analog magnitudes, and
even engage in set-based quantification, they cannot use language to
enrich or link these and so to create the sides of Quine’s chimney,
inching up it to arrive at the natural numbers. I do not know whether
my suspicions are correct; there are no relevant data. But whether or
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not they are is a question of great theoretical importance in our quest
to understand the origin of the human conceptual repertoire. The
capacity for Quinian bootstrapping underlies the construction of
new representational resources that allow us to think thoughts we
could not previously entertain. We may be the only animal with this
capacity.

There is another possible principled reason Ai may never have
made the induction children make. This induction requires recursion: 2
is (1 þ 1), 3 is ((1 þ 1) þ 1), 4 is (((1 þ 1) þ1) þ1), and so on. Marc
Hauser, Noam Chomsky, and Tecumsah Fitch (2002) suggested that
the capacity for recursion may be one that separates nonhuman animals
and human beings. On either hypothesis—nonhuman animals lack the
symbolic capacity for Quinian bootstrapping in general or the
computational capacity that underlies the induction made in this par-
ticular case (and nothing prevents both from being true)—creating a
representation of the positive integers would forever elude nonhuman
animals.

Conclusions

Kronecker was wrong. Neither God nor evolution gave humans natural
number. Natural number is a human construction. I have provided
here one worked example of the creation of a new representational
resource with more power than the representations upon which it is
built. The lessons I wish to draw, however, are very general. Such
creations occur repeatedly, both historically and within the individual
child. Within mathematical representations, much has been written
about the creation of 0, negative numbers, and rational numbers. Each of
these developments transcends the power of the numeral list represen-
tation that is the focus of the present chapter, and each requires further
episodes of Quinian bootstrapping (see chapters 9 and 11 for a discussion
of the construction of rational number). Similarly, within the history of
science, theory changes that involve conceptual change involve the
creation of new representational resources that allow thoughts that were
previously unthinkable, and these theory changes also require Quinian
bootstrapping (see chapters 10 and 11).
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9
Beyond the Numeral List Representation of
Integers

Unlike core cognition, which is continuous throughout the life span,
much of conceptual development involves qualitative changes and thus
discontinuities in the systems of representation that underlie thought.
Chapter 8 presented a case study of a developmental discontinuity. None
of the original three core systems with numerical content (analog magni-
tudes, parallel individuation, set-based quantification) can express exact
cardinal values such as seven or thirty-two, let alone 6,856,349 or infinity.
Thus, the numeral list representation of the positive integers contains
representations not expressible in any attested conceptual system from
which it is built. As expected by this analysis, learning to use the numeral
list to represent number is very difficult; it does not merely involve
mapping words to symbols that already exist prelinguistically.

Even when the child has constructed a count list and induced how to
deploy it to represent number, the construction of a representation of the
positive integers is not complete. Strictly speaking, what the child has
constructed by the end of the bootstrapping episode detailed in chapter 8
is capable of expressing only a finite subset of the positive integers,
constrained by the length of the child’s count list (at most 20 at the time
the child first succeeds at using counting to represent number, often only
10 or fewer). The bootstrapping process continues. Part I of this chapter
considers how the child who uses counting to represent number (i.e., is a
cardinal-principle-knower) integrates the count list with analog magni-
tude representations, and what this integration buys the child. My goal is
to further illustrate the meaning-making capacity of Quinian boot-
strapping.

Over the next few years, the child extends the verbal numeral list to
“one hundred” and then “one thousand,” beginning to command the
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base system, and coming to the realization that there is no highest
numeral. Perhaps we would want to credit a representation of natural
number only at this point. The issue here is purely semantic; it depends
upon what we choose to count as a representation of natural number.
When we study conceptual development we must characterize the
child’s representational resources at different points, including the com-
putations they support, and then we are in a position to characterize their
content.

Equally obviously, mathematical development does not end with the
construction of representations of natural number. Both in this history of
mathematics and in the conceptual development of the child, increas-
ingly powerful representations are created, and often this process requires
further bootstrapping. Many books could and have been written on the
historical construction of representations of zero, of rational number, of
real number, and of orders of infinity, as well as mathematical structures
that are not numbers in any sense. As with natural number, these cul-
turally constructed representations must then be mastered anew by each
individual learner.

It is beyond the scope of this book to treat any other episode in the
construction of mathematics in the detail I have given to the numeral list
representation of natural number. In Part II of this chapter, I present
evidence for a second discontinuity in the development of mathematical
cognition: the construction of representations of fractions. Chapter 11
then takes up the bootstrapping process that underlies this developmental
discontinuity.

Part I: Integrating the Numeral List with Analog Magnitude
Number Representations

As chapters 4 and 8 reviewed, adults have integrated the numeral list with
analog magnitude representations of number. Even when comparing the
numerical values of symbols (e.g., which is more, 5 or 6), adults display
the Weber-fraction signature of analog magnitudes. For example, it is
harder to say which is larger between 5 and 6 than between 5 and 9

(Dehaene, 1997). Reflect on this fact for a moment. “Five” is the next
numeral in the count list after “four”, and adults couldn’t be more
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practiced at counting, “one, two, three, four, five . . . ” Still, when
deciding numerical order, they apparently rely on the analog magnitude
number sense, for ease of comparison is a function of the ratio between
the numbers, not practice at the count list.

Analog magnitudes could not underlie this judgment if they were
not mapped to the numerals. And, of course they are. The simplest and
most straightforward demonstration of this mapping derives from tasks in
which participants are asked to estimate the number of dots on a display,
or number of clicks in a stream, when prevented from counting. Randy
Gallistel, Rochel Gelman, and their colleagues (Whelen, Gallistel, &
Gelman, 1999; Cordes, Gelman, & Gallistel, 2002) showed that adults’
estimates are an almost perfect function of number—that is, if there are
20 dots, the mean estimate is 20. But the standard deviation of the
estimate is also a linear function of number. That is, the range of responses
given to sets of 40 is twice as big as to sets of 20. This is scalar variability
and it follows from Weber’s law.

Chapter 8 considered and rejected the hypothesis that constructing
the mapping between verbal numerals and analog magnitudes simply is
the process through which verbal numerals come to have numerical
meaning. As detailed in chapter 8, LeCorre showed that children do not
construct this mapping until about six months after they have figured out
how the count list represents number, so this mapping could not possibly
play a role in the child’s construction of the numeral list representation of
natural number. Still, the mapping is eventually constructed. What does
the child gain from it, and how is it achieved?

What Children Gain by Constructing the Mapping

Consider a child who understands how counting represents number, but
has not yet made the mapping—a cardinal-principle-knower who is a
nonmapper. This child definitely understands the numerical meaning of
“seven.” He or she knows that seven is one more than six, which is one
more than, five, and so on, and can use the numeral list to represent the
cardinality of sets. The philosopher of mathematics, Marcus Giaquinto
(2007), suggested a way you may get a feel for the state the child is in,
assuming you know how binary notation represents number but have not
worked with it enough to map it onto analog magnitudes. Take 10101. If
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you understand how binary notation works, you know that this number
is one more than 10100, and you can count up: 1, 10, 11, 100, 101, 110,
111, 1000. . . . But what number is 10101? You may understand this just
exactly as LeCorre’s CP nonmappers understand the number 7. That is
your understanding may be exhausted by your ability to count in binary.
Giaquinto pointed out that your understanding is greatly enriched if
somebody tells you that 10101 is the number of circles in Figure 9.1.
Mapping 10101 to the innately given and interpreted analog magnitude
representation of this set of dots provides a new source of meaning for
“10101.” Your understanding is also greatly enriched if you learn that
10101 is 21 in decimal notation. Mapping 10101 to 21 brings two new
sources of numerical meaning: 21 is mapped onto analog magnitudes
already by adults, and so learning that 10101 in binary notation is 21 in
decimal notation provides the same additional meaning for 10101 as does
learning that it is the number of dots in Figure 9.1. Also, 21 has rich
numerical meaning for adults from within the numeral list and the
arithmetical system built on it (e.g., 21 is odd, is 3 times 7, and so on), and
so 10101 inherits all this meaning when you learn that it expresses the
same number as does 21.

Cardinal-principle-knowers who are nonmappers are in an analo-
gous representational state as the person who knows how to count in
binary but has no feel for the quantities represented. These children
understand how the count list represents number, but have not yet
mapped, “five, “six,” “seven,” “eight,” “nine” or “ten” to the analog
magnitude representations of sets of these numerosities.

Figure 9.1. 10101 (in binary) dots.
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What does constructing this mapping, making the transition
between nonmappers and mappers, buy the child? Additional meaning is
provided by the content of the symbols in the analog magnitude system,
which in turn is partly provided by their innately given conceptual role.
For instance, we know that animals and babies use analog magnitude
representations to compare sets with respect to which has more (see
chapter 4), and that adults rely on analog magnitude representations in
comparing numerical magnitudes, even when the input to the com-
parison is symbolic. That is, number comparison is one of the numerical
computations analog magnitude representations support. Perhaps non-
mappers will not be able to tell which of two numerals picks out a larger
set. CP nonmappers may not be able to compute numerical order from
numerals alone. LeCorre (2007; see also Condry & Spelke, 2008) showed
just that. Nonmappers (subset-knowers and cardinal-principle-knowing
nonmappers alike) are unable determine numerical order among verbal
numerals above “four.” For example, when asked about closed boxes,
one of which was said to have six apples in it and the other ten, “Which
box has more apples? This one that has six or this one with ten?” non-
mappers responded at random. The children understood the question.
Remember, all of these children can count to ten, and all have mapped at
least some numerals (e.g., “one” and “two”) to core cognition (see
chapter 8). All children could answer these questions so long as at least
one of the numerals in the comparison had already been assigned a
numerical meaning (e.g., a “two”-knower judges that the box with two
has less than the box with ten, but responds at chance when asked to
compare six with ten).

In contrast, the mappers—children who have mapped numerals to
analog magnitudes (i.e., who can provide a verbal estimate of the number
of individuals in a set of ten dots using a verbal numeral larger than when
providing a verbal estimate the number in a set of six dots; see chapter 8)
—answer correctly for all pairs of numerals within their count list. This
finding is important for two reasons. First, it provides convergent evi-
dence for LeCorre’s conclusion that there are children who understand
how counting works who have not yet mapped numerals to analog
magnitudes. Not only are the slopes of verbal estimates as a function of set
sizes between four and ten zero for nonmappers, but these children
cannot carry out a computation known to be subserved by analog
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magnitudes in adults—say, whether a set with seven apples has more or
fewer apples than a set with ten apples. Second, and more important to
me here, the finding shows that constructing the mapping between
numerals and analog magnitudes provides new numerical meaning for
the numerals, even for children who understand how the numeral list
represents number. The new meaning created is analogous to that
derived from mapping binary strings onto analog magnitudes for adults
who understand binary notation only as a counting system.

Creating such mappings between previously distinct systems of
representation is part of the process of filling in placeholder structures
during bootstrapping episodes (see chapter 8). In this sense, we can
conceive of the construction of this mapping as part of the process of
bootstrapping a representation of the positive integers, for this mapping
provides the meaning to the count list that is inherited from core analog
magnitude number representations. Analog magnitude representations
support numerical comparison, and also mental arithmetic (at least
addition, subtraction, and doubling/halving; see chapter 4). When
numerals are mapped onto analog magnitudes, analog magnitudes
become a source of representation that supports these numerical processes
over numerals.

How the Mapping Is Achieved

Thus, it is clear what constructing the mapping between analog magni-
tudes and numerals might buy the child. But how does the child construct
the mapping? Mathieu LeCorre lays out two possibilities. First, the child
may simply associate numerals with analog magnitude representations by
observing which sets are represented by which numerals. That is, the
child must experience the pairing of “six” with sets of six, and learn the
pairing of the analog magnitude symbol for 6 with “six” by association. If
this were the only mechanism subserving the mapping, it would have to
be made one numeral at a time, number by number. Second, once the
child has learned the count list, and how the count list represents number,
the child may draw on the order information contained in the count list
to infer the analog magnitude that corresponds to any given numeral.
That is, the child may infer a rule “later in the list implies greater
number,” and use this rule along with some mappings achieved
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associatively to complete the mapping of the entire numeral list to analog
magnitudes.

It is fairly obvious that eventually children and adults use the rule-
based inferential process. It seems highly unlikely that adults need to
experience a pairing of 245 entities with the numeral “245” to be able to
estimate, with a numeral, the cardinal value of a set of 245 dots.
Experiments with adults show that their numerical estimations require
calibration. If simply asked to provide estimates of the numbers of dots in
a series of sets, with no information about the range of set sizes involved,
adults’ estimates are monotonically related to set size, but often way off.
However, when given just one calibration value (e.g., being told how
many dots are in a sample set of 150 dots), performance improves
dramatically when they are subsequently shown sets drawn from the
range of 10 to 300 and told how many entities there are. That a single
calibration trial has this effect implies that they must have some pro-
ductive method for generating the mapping (Izard & Dehaene, 2007).

Furthermore, experiments by Jennifer Lipton and Elizabeth Spelke
(2005) suggest that by age 5, children make use of the rule-based infer-
ential process. Lipton and Spelke assessed children’s counting skills to 100.
Children were prompted with triads, such as “65, 66, 67 . . . ” or “76, 77,
78 . . ,” and asked to count up from there. Of crucial importance was
whether they could manage the decade transition. At age 5, most chil-
dren have mastered the count list to 40, or even to 60, and about half
have done so to 100 or above. A variety of tasks then assessed the chil-
dren’s mapping of numerals onto analog magnitudes. For example,
children were shown sets ranging in size from 4 to 120 and asked to
estimate how many dots there were in each. Figure 9.2 shows the results
from one illustrative experiment. Adults displayed the expected linear
relationship between set size and average numeral produced, and so did
skilled counters—those who had mastered the count list to over 100.
Unskilled counters—who had mastered the count list only to 60—pro-
vided a linear relationship between set size and average numeral pro-
duced up to 60, but then provided a flat function for sets between 80 and
120.

Skilled and unskilled counters were in the same kindergarten and
were the same age. It is extremely unlikely that skilled counters have
experienced markedly more pairings of “eighty” with sets of 80 and
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“one-hundred with sets of 100 than have unskilled counters, yet the
skilled counters made accurate estimates of how many dots there were in
sets of 80 and 100 and the unskilled counters did not. It seems likely,
then, that children of this age have created the rule-based inferential
process that relates place in the count list to analog magnitude repre-
sentations. Of course, one cannot make use of this inferential process
unless one knows the relevant part of the count list, and only the skilled
counters did so.

Whether associative pairing of large sets with a given cardinality to
specific numerals is necessary to apply the rule that relates position in the
count list with analog magnitude number representations could be settled
with a training experiment. Unskilled counters could be drilled in
reciting the count list, but not given experience actually counting large
sets, so that they experience no pairings between large numerals and
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Figure 9.2. Data from Lipton & Spelke (2005). The average numeral produced
(y axis) as a function of the number of dots in the stimulus array. a: adult estimates. b:
estimates of 5-year-old counters skilled at counting to 100. c: estimates of 5-year-old
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analog magnitude representations of large sets. If children can infer the
mapping from knowledge of the count list itself, then upon becoming
skilled counters they should perform as did the skilled counters in the
Lipton and Spelke experiments.

That 5-year-olds have constructed the rule-based inferential process
by no means implies younger children have. Indeed, LeCorre’s data
reviewed in chapter 8 very strongly supports the number-by-number
associative model for the earliest stages of the process of mapping numerals
to analog magnitudes. Recall the nonmappers who understand the
cardinal principle. These children can all count to ten (and sometimes
higher). They recite the count list effortlessly, and use it to construct sets of
any cardinality within those named by numerals they know, and to fix sets
that have been miscounted. They spontaneously draw on counting to
solve numerical problems. These children are skilled counters (to ten). Yet
the construction of a mapping between numerals and analog magnitudes
proceeds slowly and in a piecemeal manner. Some children have done so
to five, some to six, some to eight, some all the way to ten, and so on.

Thus, the answer to the question of how the mapping between
numerals and analog magnitudes is constructed—associatively, and
piecemeal, number by number, or by an inferential process that draws on
knowledge of order in the count list—is most probably both. Even adults
need calibration, showing a role of an associative mapping between
numerals and analog magnitude representations of sets. But at the
beginning of the process of constructing the mapping, children must
build up the mapping numeral by numeral, associatively. Until they have
done so, they don’t have the basis for forming the rule. Remember, this
rule was the proposed centerpiece of the first bootstrapping proposal in
chapter 8. Chapter 8 reviewed data that show this rule is learned well after
the child has worked out how counting represents number, and thus
cannot be the basis of the initial construction of the numeral list repre-
sentation of natural number. Nonetheless, it is very likely that children do
induce the rule that numerals later in the list express larger numbers. This
rule enables children to estimate from a numeral’s place in the count list
what size set it is likely to represent.

In sum, becoming a cardinal-principle-knower is just the beginning
of creating an understanding of the positive integers. Once a child has
created the numeral list representation of integers, his or her repertoire of
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represented integers can be extended by merely extending the list, and
intuitive addition and subtraction algorithms are generalized from
counting. As we have just seen, once the numeral list is integrated with
analog magnitude representations, this latter system is also a source of
arithmetical generalizations over integers. All of these are important
enrichments of numerical representations in the late preschool years, but
all build, in a straightforward way, on the representational resources in
core cognition and on the culturally constructed and now internalized
numeral list representation of the positive integers.

The construction, enrichment, and entrenchment of the numeral list
representation of natural number that occur during the preschool years
are a great intellectual achievement. Moreover, there are many further
episodes of qualitative changes in the course of mathematical develop-
ment, in which a newly constructed representational system has more
expressive power than its input. I will illustrate this point by sketching
one example—the construction of representations of fractions. This
construction requires conceptual change and a new episode of Quinian
bootstrapping (see chapter 11).

Part II: Rational Number

As we have seen, when they are 3 years old, middle-class children
growing up in a numerate culture typically construct their first repre-
sentations of the positive integers—a numeral list deployed in counting.
Very soon thereafter, they integrate numerals larger than “four” with
analog magnitude number representations. In the immediately following
years, children use, and thus entrench, this integrated representational
system to invent addition and subtraction algorithms based on the suc-
cessor function (i.e., by counting up and counting down) to extend their
count list to the hundreds, to become conservers of number (i.e.,
explicitly come to realize that numerical equivalence is guaranteed by
1–1 correspondence; Piaget, 1952), and to realize that there is no highest
number (because one can always add 1; Hartnett & Gelman, 1998). The
numeral list representation of integers, deployed as licensed by the
counting principles, is the symbol system in terms of which preschool
children think explicit thoughts about numbers.
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As Rochel Gelman (1991) has argued, in this conceptual scheme,
there is no place for 1/3 as a number. The extension and conceptual role
of the concept number are markedly different before and after the con-
struction of representations of the rationals. Clearly, the extension of the
concept number is vastly expanded when it comes to include rational
numbers, and the conceptual framework in which representations of
rational number is embedded differs from that exhausted by repre-
sentations of positive integers in many fundamental respects. Rational
numbers are based on division (“x/y” means “x divided by y”), not on
the successor function, and division of integers cannot be easily modeled
in terms of the numeral list representation of integers. Unlike multipli-
cation of integers, which can be modeled as repeated addition and thus
repeated counting on, the division of integers cannot always be modeled
as repeated subtraction of whole numbers. To create a representation of
rational number, children must develop the following interrelated
understandings: that there are numbers between any two successive
integers, including between 0 and 1; that the relation between the
numerator and denominator in fractions is one of division; and that
rational numbers are infinitely divisible and thus there are an infinite
number of them between successive integers. When the concept number
has come to include the rationals, there is no answer to such questions as
“What is the next number after 1/3?” or “What is the next number after
three?” When we answer “four” to the latter question, we have inter-
preted “number” to mean integer.

Several predictions follow from the hypotheses that (1) young
children have an entrenched understanding of natural number based on
the successor relation and the counting algorithm; and (2) that con-
structing a representation of the rationals requires the construction of a
qualitatively different conceptual scheme from the numeral list repre-
sentation of natural number. First, constructing a representation of the
rationals should be difficult for children to achieve. Second, we should
see intrusions from children’s representations of integers as they try to
make sense of what they are being taught about fractions and decimals.
Third, given the analysis of the conceptual discontinuity sketched above,
understanding division should be at the heart of constructing a repre-
sentation of the rationals. And finally, we should see within-child consis-
tency across a wide range of tasks that reflect disparate aspects of the
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representations of rationals; both CS1 (number restricted to the integers)
and CS2 (number includes the rationals) are stably, but differently,
interrelated systems of concepts and operations. All of these predictions are
born out, as I illustrate below.

Difficulty of Learning; Intrusions from Whole Numbers

Students’ difficulty in acquiring the concept of rational number has been
well documented. Indeed, above and below the mean (500) on the math
Scholastic Aptitude Test (SAT) given at the end of high school reflects an
understanding or lack thereof of decimals and fractions. Part of the
problem is notational: What does “1/56” mean? Gelman showed that
many elementary schoolchildren cannot explain why a given fraction is
written with two numerals (R. Gelman, 1991). They do not understand
that “1/56” expresses a single number, not two. Not only do children fail
at explicitly explaining the mathematical role of the numerator and the
denominator in representing fractions, their lack of understanding is also
revealed in simple ordering tasks, such as determining whether 1/56 is
larger than 1/75. This difficulty has been shown to persist through the
high school years in many different countries (c.f., Behr, Wachsmuth,
Post, & Lesh, 1984, for the U.S.; Kerslake, 1986, for England; and
Nesher & Peled, 1986, for Israel). Children’s judgments and justifications
for those judgments show their error to be an intrusion from integer
representation; they say 1/75 is larger than 1/56 because “seventy-five is a
bigger number than fifty-six.” Similarly, researchers have found persistent
difficulty in ordering two decimals such as 2.09 and 2.9 because “two
hundred and nine is bigger than twenty-nine” (Carpenter, Corbitt,
Kepner, & Lindquist, 1981; R. Gelman, 1991; Moss & Case, 1999), as
well as placing a number like .685 on a number line that goes from 0 to 1

(Rittle-Johnson, Seigler, & Alibali, 2001), and lining up decimals such as
5.1 and .46 so as to add or subtract them

Understanding Division

One cannot understand fractional notation (e.g., “1/75”) without under-
standing division. Children in the grips of CS1 are equipped to understand
addition and subtraction on the basis of the successor function and the
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counting algorithm, and, as mentioned above, multiplication is modeled
as repeated addition of whole numbers. Obviously, these models do
not apply to fractions. One must understand division to grant the very
existence of numbers between 0 and 1, and, of course, to understand that
there are infinite rational numbers between any two integers.

Carol Smith, Gregg Solomon and I (2005) explored the degree of
within-child consistency in various reflections of children’s under-
standing of fractions and decimals, as well as with their understanding of
division. Our sample consisted of middle-class 8- to 12-year-olds, the
ages during which many children first construct an understanding of
rational number. And indeed, confirming the data in the literature on
children’s understanding of fraction and decimal notation, half of the
participants in our study erroneously judged that 1/75 was a larger
number than 1/56. Children’s qualitative justifications of this judgment
indicated that they saw the two numbers in a fraction as two distinct
whole numbers rather than determining a single number determined by
division. Conversely, virtually all of those who ordered the numbers
correctly articulated a relevant justification. Many envisioned what
happened when you cut things into pieces; for example, “It’s better to
have 1/56 of a pizza than 1/75; the larger the bottom number, the smaller
the fraction.”Others simply articulated the general rule: “The smaller the
denominator, the larger the fraction.”Note that in this latter explanation,
students explicitly acknowledge a distinction between the numeric value
of one part of the fraction and the fraction itself, consistent with their
understanding that 1/75 represents one particular number, not two.
Similar results were obtained when the children were asked to order
decimals such as .65 and .8, and success on one task predicted success on
the other.

Following Rochel Gelman, the second way we probed children’s
understanding of fractional notation was simply by asking them to
explain why there are two numbers in a fraction such as 1/7. If children
understand a fraction in terms of division, then they should be able to
give meaning to the two numerals vis-à-vis an explicit division model.
They might directly state that a fraction is merely one number divided by
another. Alternatively, they might explain that the denominator indicates
the number of parts the whole is divided into, and the numerator indi-
cates the number of parts of that size. We found that about half of the
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students either had no model of a fraction or had an incorrect model.
Those with no model typically said uninformative things, such as
“because they are there,” “two numbers equal a fraction,” “I forget,”
“don’t know—I can’t explain,” or “top is the numerator, bottom is the
denominator.” Those with incorrect models all made reference to
representations or concrete situations that they had witnessed in teaching,
but they provided mistaken interpretations of what the numbers stood
for, and thus what concept had informed the teacher’s lesson. Fractions
are often discussed in terms of cutting pies or other objects, and some
students thought the 1 referred to the “whole” and the 7 to the slices
(e. g., “1 means one pie; seven equal pieces” or “one whole thing, seven
slices”). Others gave incorrect mathematical formulations relating the
two numbers in terms of subtraction or multiplication rather than divi-
sion (e.g., “1 is how many you are taking away; 7 is how many you
have,” “1 out of 7 is 6,” or “1 times 7 equals 1/7”).

In contrast, about one-fourth of the sample were able to articulate a
clear division model in which they explained that the denominator refers
to how many pieces the whole has been divided into and the numerator
refers to how many such pieces one has. For example:

$ “The top number is how many you used; the bottom number is how
many there are altogether in total; how many pieces to make one.”

$ “The 1 is the numerator; 7 is the denominator. The numerator is how
many you have and the denominator is how many it takes to make 1.”

The rest of the sample gave ambiguous explanations—ones that
could be consistent with either a division or subtraction interpretation.
Most typically, these children said 1/7 means “1 out of 7,” which could
mean either 1 of a whole divided by 7 or 1 taken from a set of 7.

Understanding the Infinite Divisibility of Number;
Numbers between 0 and 1

Logically, children must first recognize the existence of numbers between
0 and 1 before they can make the inductive leap that numbers are infi-
nitely divisible. Smith, Solomon, and I (2005) simply asked the partici-
pants in our study whether there are any numbers between 0 and 1, and if
so, how many they think there are. Almost half initially said there were
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no numbers between 0 and 1, as is consistent with their interpreting
“number” as “whole number.” Even when specifically asked about the
number 1/2, some denied 1/2 was a number between 0 and 1, although
most agreed it was. This latter group ultimately acknowledged the
existence of some numbers between 0 and 1, either spontaneously or
after being probed, but most of those who had initially denied the
existence of any such thing said that they thought there were just a few,
naming specific examples such as 1/2, 1/3, and 1/4. Altogether, about
half of the children in the same group claimed either that there are no
numbers between 0 and 1 or at most just a few.

In contrast, the other half of the sample either said there were an
infinite number of numbers between 0 and 1, using the words “infinite”
or “continuous” or semantic equivalents such as “numbers go on for-
ever,” “you can’t stop decimals,” or there is “an endless amount of
numbers,”—or at least they claimed that there were “lots,” “hundreds,”
“millions,” or even “trillions” of numbers between 0 and 1, but stopped
short of saying there were an infinite number.

To further clarify whether students thought there were an infinite
number of numbers between 0 and 1, we devised a number-thought
experiment. We asked children what one obtains by dividing 2 in half
(answer, 1) and by dividing 1 in half (answer 1/2). We then asked
whether we could divide ‰ by 2, and again the resulting number by 2,
and whether this process could go on forever. We asked whether the
numbers would be getting smaller and whether the process would ever
end in 0. There were two coherent patterns of response (“get to zero”;
“never get to zero”) consistent with different underlying conceptions of
number. The get to zero pattern (half the sample) is consistent with
an understanding of fractional numbers as occupying finite, separate
points on a number line, like integers. Students were coded as having
shown this pattern if: (1) they claimed that there are at most only a limited
number of numbers between 0 and 1; and (2) they claimed that when one
repeatedly divided a positive number in half, one would get to 0, con-
sistent with confusing repeated division with repeated subtraction. Some
even claimed that one would get to 0 and then pass to negative numbers.
To give a feeling for what the data in such a study are like, see some
representative excerpts in Figure 9.3. Figure 9.4 gives some excerpts from
the “never get to zero” responses.
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Figure 9.3. Excerpts from protocols that reveal the “get to 0” pattern of response.
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Figure 9.4. Excerpts from protocols that reveal the “never get to 0” pattern of
response.

351



Most children were classifiable into one of these two patterns; only
10% had transitional patterns. Only slightly more than half (60%) of the
11- and 12-year-olds in our sample showed the adult never-get-to-zero
pattern of response, confirming that the construction of even a minimal
understanding of rational number is not complete by age 12.

Within-Child Consistency

On each of the measures described above, about half of the sample
provided responses consistent with the hypothesized CS1 (number
restricted to integers) and about half of the sample reflected a division
model of rational number. One purpose of our study was to probe for
within-child consistency across the five tasks (asserting that there are
numbers between 0 and 1, explaining why there are two numerals in a
fraction, ordering fractions, ordering decimals, and get-to-zero thought
experiment). Notice that these tasks differ greatly in difficulty. The
thought experiment and creating an explanation of the role of the two
numerals in a fraction place more analytic demands on the child than do
merely asserting that there are numbers between 0 and 1 or ordering
fractions and decimals. Further, the latter are specifically taught in the
school curriculum whereas the former are not. If each of CS1 and CS2 is
a consistent set of concepts that are integrated and mutually constraining,
and if they are qualitatively different from each other, then children
should respond to all of our probes consistently with one system or the
other, with very few children responding in a manner that reveals CS1 on
two or three of the five probes and that reveals CS2 on the others. On the
other hand, if children acquire insight about fractions, decimals, and the
infinite divisibility of number in more graded, piecemeal fashion, merely
enriching the concept of number created during the preschool years,
then, assuming no ceiling or floor effects, the mixed patterns should be
more common than either of the patterns in which all tasks are responded
to as if generated either by CS1 or by CS2.

In fact, only 12% of the children gave CS2 responses on two or three
tasks and CS1 responses on three or two tasks; the rest were answered
consistently as if their responses were generated by CS2 (37%) or by CS1
(51%). What is most striking about the distribution of scores is that those
children who showed evidence of some understanding of fractions (i.e.,
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those children who did not answer all probes as dictated by CS1) were
three times more likely to provide consistent CS2 answers than to show
the mixed pattern of judgments. Moreover, this was as true for the
younger as for the older children. Given that more than half of the
children were still in the grips of CS1, we can rule out the possibility that
this simply reflects a ceiling effect.

In sum, the transition from a numeral list representation of natural
number to a representation of number that encompasses the rationals is a
qualitative change. I have characterized a CS1 and a later developing
CS2, showing how CS2 has more expressive power and is qualitatively
different from CS1. I have shown that performance on a wide variety of
tasks (and those described here are just the tip of the iceberg, chosen for
illustrative purposes) reflects each. As predicted by this analysis, CS2 is
very difficult for children to learn, in spite of explicit and intensive
school-based instrudtion. Finally, that each reflects a coherent system of
representation is shown by the within-child consistency in responses
across the different tasks.

Conceptual Discontinuity

One can think about the qualitative change between CS1 and CS2 as I
have described it above: the creation of a new representational system
with more expressive power than its input. Before the construction of a
representation of rationals, children cannot think thoughts about ! or
.75, 79/80 or .9875, and afterwards they can. In CS2 the computations
carried out over explicit numerals been expanded from comparison,
addition, subtraction, and multiplication to include division as the inverse
of multiplication. Another way to think about the CS1/CS2 shift is as a
conceptual change in the concept number.

This latter way of thinking about the CS1/CS2 shift requires an
analysis of the very notion of conceptual change, as well as a distinction
between conceptual change and belief revision. The remaining chapters
of this book explicate conceptual change, defending the notion against its
critics, and arguing that it plays a crucial role in distinguishing some
episodes of discontinuous development from mere knowledge enrich-
ment. Knowledge enrichment consists of changing beliefs and learning
new facts about entities, where these facts and beliefs are stated in terms of
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concepts already represented. Conceptual change involves creating new
conceptual primitives—concepts not able to be stated in terms of the
concepts available at the outset of the episode. Conceptual change
implies incommensurability of successive conceptual systems, and chap-
ters 10 and 11 take on the challenge of making good on the Kuhn/
Feyerabend notion of incommensurability. Here I merely begin this
discussion in the context of the CS1/CS2 shift under consideration here.

On the face of it, it might seem that the CS2 encompassing the
rationals is merely an enrichment of the CS1 that is natural number. After
all, representations of positive integers based on the successor relation
continue to play an important role in mathematical thought even after
representations of rational number have been constructed. This is so, but
coming to see 1/3 as a number on a par with 1 and 3 may nonetheless
implicate conceptual change within the concept number, involving a
reconceptualization of the integers.

Knowledge enrichment consists of changes in beliefs formulated
over the same concepts before and after the change, or in the addition of
new concepts that do not implicate the revision or abandonment of
antecedent ones. Learning that there are new kinds of numbers, in
contrast, directly challenges children’s initial and entrenched concept of
number as counting number. Before the change, 1 and 1/2 are funda-
mentally different kinds of entities: 1 is a number that occurs in the count
list and 1/2 is something else. Some children deny that 1/2 is a number,
and, although this might merely be a semantic issue to do with the term
“number,” even those children in the grip of CS1 who come to agree
that 1/2 is a number still often claim that there are only a few numbers
between 0 and 1 and that repeated division will get to 0. This implicates
differences from CS2 both in the concept number and in the concept
division. Such interrelated and mutually constraining differences typify
cases of conceptual change involving incommensurability

After the change, 3 is represented as a number of the same status as
1/3—it is its multiplicative inverse, it can be expressed as “3/1” and, like
1/3, it corresponds to just another point along the number line.

“Conceptual change” means change in individual concepts. One
way concepts can change is coalescence of previous concepts that were
ontologically distinct and played incompatible conceptual roles in the
conceptual systems that are CS1. The coalescence of 3 and 1/3 under a
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single concept number is a classic case. The coalesced concept (that unites
numbers like 1/3 and numbers like 3) makes no sense in the original
system. Another type of change at the level of individual concepts is
differentiation—one concept splits in two. Not just any differentiation
implicates conceptual change. The differentiation of the concept dog into
subordinate concepts poodle, dalmation, pit bull, and so on does not,
because the concept dog had the same extension and conceptual role
before and after this differentiation. In cases of differentiation implicating
conceptual change, the previously undifferentiated concept makes no
sense in the lights of CS2 indeed, it is incoherent from the point of
view of CS2. The CS1/CS2 change under consideration here involves
differentiating subtraction from division. This is a classic differentiation
in which the undifferentiated concept (subtraction/division) is incoherent
from the point of view of the attained system. The undifferentiated
concept plays no role in mathematics after the differentiation has been
achieved. All cases of conceptual change involving incommensurability
involve interrelated coalescences and differentiations of this sort, yielding
a set of primitives that cannot be expressed in terms of the primitives
available at the outset.

Thus, the argument that the core of the concept of positive integer
remains essentially unchanged before and after the construction of
rational number—because it is based on the successor relation—ignores
the fact that in developing a concept of rational number, children have
developed an entirely different model of number that has transformed
their understanding of positive integers. Numbers are no longer solely the
counting numbers, and the positive integers are now a subset of all
numbers, occupying points along a seemingly continuous number line.

Implications of the High Degree of Within-Child Consistency
in Reasoning about Number

Above, I argued that the extent of the coherence found in children’s
reasoning about number across widely different tasks designed to reflect
CS1 or CS2 supported the claim that the transition from one to another
was qualitative—that is, that this is a developmental discontinuity. This
type of consistency is entailed by, and thus provides evidence for, the
hypothesis that conceptual change is required by this transition. Strong
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coherence is expected on a conceptual change account, within both CS1
and CS2, because concepts are interrelated differently in the two systems,
with understanding of one aspect of each system constraining under-
standing of others. In contrast, on a knowledge enrichment account,
coherence is not an intrinsic part of the change process, as new facts can
be added somewhat independently. Further, in the knowledge enrich-
ment view, any coherence that is observed would be seen as resulting
from extrinsic factors such as lack of exposure or explicit teaching. In this
view, young children may consistently fail on certain tasks when they
haven’t been exposed to relevant information yet; similarly, older chil-
dren may consistently succeed when they have been explicitly taught all
the items in question. But partial patterns of success and failure should
also be abundant, especially because one is typically not exposed to all of
the information at once.

Three features of the observed patterns of coherence favor a
conceptual change interpretation. First, there was exceptionally strong
coherence among the diverse number tasks. Being able to articulate a
clear division model of fractions was strongly associated with spon-
taneously acknowledging the existence of numbers between 0 and 1,
being able to order fractions and decimals, and understanding the
infinite divisibility of number. Second, coherence was equally striking at
both grade groupings. On an exposure account, one might have pre-
dicted less coherence among the 3rd and 4th grade children than
among the 5th and 6th grade children because the younger children
have had more experience with fractional than decimal notation.
Hence, one might have predicted that many 3rd and 4th grade children
would have mixed patterns reflecting only partial mastery of these ideas.
Yet this prediction is not borne out. Only one of the 3rd and 4th grade
children had a mixed pattern; the rest were either consistently correct
(14%) or consistently incorrect (82%). Indeed, the overwhelming failure
of the 3rd and 4th grade children on the different fraction problems—
despite exposure—is quite striking. A detailed examination of their
answers revealed that they had heard of fractions and knew something
about them, they just did not understand them correctly as numbers. This
pattern of systematic misunderstanding of a new idea—by assimilating
it into an earlier entrenched understanding—lends support to the con-
ceptual change rather than to the knowledge enrichment account.
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Finally, one of the tasks—the number thought experiment—tapped
an understanding that children had not been explicitly taught. The fact
that this task patterned as closely with the other tasks that were more
related to direct instruction (such as acknowledging the existence of
numbers between 0 and 1, understanding the meaning of the two
numbers in a fraction, and correctly ordering fractions and decimals) also
lends more support to the conceptual change than the knowledge
enrichment position. If coherence is an artifact of direct instruction, then
children’s understanding of the infinite divisibility of number-thought
experiment should lag the others; it is not something that has been
directly taught. In contrast, if coherence reflects conceptual restructuring,
then the internal changes in children’s concept of number needed to
assimilate the notions of fractions and decimals should be manifest in
changed understanding of the number-thought experiment as well.

Making Sense of the Puzzling Things that Children Say

One of the hallmarks of conceptual change can be dubbed the “huh?”
phenomenon. Children say things that make no sense if the terms in
their language reflected the same concepts as adults use them to
express. The transcripts included in Figure 9.3 from the get-to-zero
children contain many examples. I urge you to read these carefully. For
example, student S39 said, in response to the thought experiment about
whether one could keep dividing by 2 forever, “No, after 1 is 0. 0 is
nothing else. If kept dividing ‰, then 1/1, then 0/1, and 0/0 and that’s
it.” Student S9’s response to the question was “Yes, it’ll soon be just a
black line, just numbers.” And in response to the question of whether
one would ever get to zero, the student replied “Yes, if you have 8 parts,
then you minus one and minus one until you get a minus 8, then you’ll
get 0.” Although these answers seem incoherent from the adult per-
spective, they make much more sense when one assumes that children
have a concept division exhausted by some way of making numbers
smaller that is undifferentiated, expressing subtraction/division and if one
assumes their concept number is a natural number.

Of course, it is impossible for us to express the child’s undifferentiated
concept subtraction/division in our conceptual system; such a notion is
incoherent. That’s the point. Incommensurability is symmetrical. CS2
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contains concepts not expressible in CS1 and CS1 contains concepts not
expressible in CS2. This raises a paradox that might make the very notion
of incommensurability seem unsustainable: How, in the face of putative
incommensurability, does a developmental psychologist or a historian
understand an earlier conceptual system? This question is taken on in
chapter 10, but the short answer is that that incommensurabilities are
always local. Enough stays constant to make it possible for the historian or
developmental psychologist to engage in bootstrapping in reverse, and
learn the concepts that articulate CS1.

Conclusion

Although when 3-year-old children build the numeral list representation
of the integers they have created a representational system with more
expressive power than those that were its input, there is plenty more
learning required in which this representational system becomes con-
solidated and entrenched. Some of that learning draws upon the very
same resources that are implicated in all Quinian bootstrapping episodes.
The example I worked through here is children’s mapping the numerals
to analog magnitudes, in the course of which they induce a rule on the
basis of analogical relations between order in the numeral list and order
among analog magnitude values.

Part I of this chapter illustrated one of the ways in which boot-
strapping creates meaning. By integrating what are initially separate
representational systems, each inherits the content and computational
capacities of the other.

Part II of this chapter sketched another case of discontinuous con-
ceptual development within the domain of mathematical cognition, in
addition to the construction of the numeral list representation of the
positive integers discussed in chapter 8. The discontinuity described here
is the transition from the preschool child’s hard-won numeral list
representation of number to the older child’s concept of rational number.
I characterized CS1 and CS2, showing how CS2 represents concepts that
are incoherent from the light of CS1 (division, the number ‰, and so on).
I provided evidence that each system is coherent and mutually con-
straining, and that children consistently display one concept of number or
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the other. I also provided evidence that CS2 is very difficult to learn
(indeed, many adults in our society have no understanding of fractions
and decimals, in spite of years of schooling aimed at inducing the con-
ceptual change described in these pages). In chapter 11, I briefly discuss
the bootstrapping processes that underlie the construction of this new
representational resource.

Finally, I suggested that not only is the system of rational number
discontinuous with the system of integers in having more expressive
power, the two may be incommensurable. Incommensurability is the
relation between conceptual systems such that one contains concepts that
are not merely absent from the other, but are actually incoherent from the
point of view of the other. Chapters 10 and 11 turn to a more complete
discussion of incommensurability in the contexts of intuitive theories.
They discuss cases drawn from both the history of science and the
developmental literatures—cases in which both CS1 and CS2 contain
concepts that are unrepresentable and incoherent from the point of view
of the other. The historical examples include the transition from the
source-recipient theory to the caloric theory of heat, the transition from
the phlogiston to the oxygen theory of burning, Kepler’s construction of
the concept that is an ancestor to Newton’s gravity, and Maxwell’s cre-
ation of electromagnetic theory. The developmental examples include
conceptual changes within children’s concepts of material entities.
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10
Beyond Core Object Cognition

Knowledge represented with explicit, external symbols—the symbols of
spoken and written language, the symbols of mathematics and logic, the
symbols of graphs and maps—differs from core cognition in many
respects: It differs in format (i.e., the explicit symbol systems themselves), it
most often is not innate, and it does not remain constant over develop-
ment. Chapter 7 touched on the processes through which core cognition
is mapped to the explicit symbol systems of natural language, and of the
effects such mappings have on nonlinguistic thought. Chapter 8 char-
acterized the process through which the first explicit representation of
natural number is created, expanding the expressive power of the number
representations in core cognition through the mastery of the culturally
constructed numeral list. Subsequent developments in mathematics, like
the construction of a concept of number that includes the rationals
(chapter 9), further expand the expressive power of number repre-
sentations through the mastery of culturally constructed explicit repre-
sentations.

I now turn to a type of knowledge structure that is different in many
ways from mathematical representations: intuitive theories. Intuitive
theories play several unique roles in mental life. These include: (1)
representing causal and explanatory knowledge; (2) supporting inferences
and predictions; (3) providing the current best guess concerning the
essential properties of kinds, which in turn play a privileged role in
categorization decisions; and (4) on some views of conceptual content,
determining those aspects of conceptual role that separate meaning
from belief. Because intuitive theories are such an important part of
cognitive architecture, many writers take accounting for theory acqui-
sition is one goal of theories of conceptual development (Carey, 1985b;
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Gopnik & Meltzoff, 1997; Keil, 1989; Wellman & Gelman, 1992).
Indeed, these writers go further than asserting the importance of
accounting for the acquisition of intuitive theories, advocating the
theory-theory of conceptual development. The theory-theory has two
main tenets. The first is that many important phenomena in the domain
of knowledge acquisition must be analyzed in terms of theory devel-
opment. The second is that intuitive theories share many essential features
with explicit scientific theories, and that lessons from the history and
philosophy of science apply to theory development in childhood.

Knowledge acquisition sometimes requires radical restructuring of
the conceptual and explanatory structures that are the input to the
learning process. Clear cases of theory changes involving radical
knowledge restructuring have repeatedly occurred over the history of
science. As I will show in this chapter and those that follow, conceptual
development in childhood sometimes also requires radical theory changes
that involve conceptual change. That this is so is one of the central tenets
of the theory-theory, which holds that successive intuitive theories of a
given domain of phenomena sometimes involve conceptual change, and
that the processes underlying conceptual change in childhood are to
some important extent the same as those that underlie conceptual change
in the history of science.

The theory-theory does not deny that there are important differ-
ences between children as theorizers and adult scientists (hence the
qualifier, “intuitive”). Children and adult nonscientists are not meta-
conceptually aware theory builders; they do not build research programs
of systematic experimentation, nor do they attempt to make formal
models (Carey, Evans, Honda, Unger, & Jay, 1989; D. Kuhn et al., 1988).
In spite of these differences, the research enterprise in which this work is
placed presupposes that there are a set of questions that can be asked,
literally, of both scientific theories and intuitive theories, and which
receive the same answer in both cases. One set of such questions concern
discontinuities in theory development, the phenomenon of incom-
mensurability, and the mechanisms underlying conceptual change.

Some adherents of the theory-theory (e.g., Gopnik & Meltzoff,
1997) advocate a “theories all the way down” position, denying the
distinction between systems of core cognition, on the one hand, and
intuitive theories, on the other. Partly, this is merely a terminological
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issue; core cognition systems do have many properties in common with
intuitive theories, as they embody ontological commitments and causal
knowledge, and constrain learning and inference. However, all of the
distinctive properties of core cognition are conspicuously not true of
intuitive theories. There are no innate perceptual input analyzers that
identify the basic ontological kinds for most intuitive theories; intuitive
theories are not continuous over development; the format of represen-
tation for most intuitive theories is not iconic; and the knowledge
embedded in most intuitive theories is accessible and explicit, not implicit
and encapsulated. For these reasons, I distinguish intuitive theories from
core cognition.

The theory-theory of conceptual development encompasses many
topics, but the phenomenon of radical conceptual change is most central
to the project of this book: understanding the origin of human concepts.
This is because in episodes of conceptual change, new concepts come
into being that were not represented, or even representable, at the outset.
For this reason, my discussion of the theory-theory of conceptual
development focuses on theory change, especially those theory changes
implicating incommensurability.

The time has come to subject the very notions of conceptual change
and incommensurability to closer scrutiny. I must dispel any worries that
the very notion of incommensurability is incoherent, sketching how
conceptual change is to be distinguished from knowledge acquisition that
does not involve conceptual change (knowledge enrichment), and what
kinds of evidence support claims that two successive theories are
incommensurable. Conceptual change is (as it says) change at the level of
individual concepts. Literally, “incommensurability” means “no com-
mon measure.” The notion was first applied to the Greeks’ discovery that
the length of a side of a right triangle and the length of its hypotenuse
cannot both be expressed with rational numbers if the same unit of length
is used. Since the work of Thomas Kuhn and Paul Feyerabend, the term
has been generalized to the relation between conceptual systems in which
there is no common set of primitives. That is, it has been applied to
conceptual changes within theories as well as within mathematical
thought (Feyerabend, 1962; T. Kuhn, 1962).

Conceptual change is implicated in those cases of theory develop-
ment that involve incommensurability. Although “conceptual change” is
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a term used loosely in the fields of psychology and education, here I give
it its meaning from the history and philosophy of science, where it is
contrasted with knowledge enrichment and belief revision. That is,
conceptual change is not the same as changing one’s mind, acquiring new
knowledge, or changing one’s beliefs. Rather, it means creating new
concepts not expressible in terms of previously available vocabulary. As I
use the term, conceptual change requires incommensurability. A given
theory at time 1, CS1, and the descendent of that theory at time 2, CS2,
are incommensurable insofar as the beliefs of one cannot be formulated
over the concepts of the other. Not all theory development involves
conceptual change; often theories are merely enriched as new knowledge
accumulates about the phenomena in the domain of the theory. Theory
enrichment consists of the acquisition of new beliefs formulated over a
constant conceptual repertoire.

In cases of two successive incommensurable theories, the differences
between the network of concepts articulating CS1 and CS2 can take
several forms. Sometimes, new concepts are created that would be
unrepresentable in CS1—for example, CS2’s quark or spin, if CS1 is
Bohr’s theory of the atom. Sometimes, old concepts cease to play any
role in CS2—for example, phlogiston or principle, if CS2 is any chemistry
since Lavoisier. Conceptual changes also take place—that is, change
within a given concept—such that there is a clear ancestor–descendant
relationship between a concept in CS1 and its descendant in CS2.
Conceptual changes take several forms. Perhaps the most common is
differentiation. In conceptual differentiations involving incommensura-
bility, the undifferentiated parent concept from CS1 no longer plays any
role in CS2. Examples include Galileo’s differentiation of average from
instantaneous velocity (T. Kuhn, 1977) and Black’s differentiation of heat
from temperature (Wiser & Carey, 1983). Another common type is
coalescence. In coalescences involving incommensurability, entities
considered ontologically distinct in CS1 are subsumed under a single
concept in CS2. Examples include Galileo’s abandonment of Aristotle’s
distinction between natural and artificial motion (T. Kuhn, 1977), and
the coalescence of liquids, solids and gases into a single concept of
material entities (Jammer, 1961). Conceptual change may also involve the
reanalysis of a concept’s basic structure (such as the Newtonian reanalysis
of weight from a property of objects to a relationship between objects).
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And finally, on the common treatment of concepts as having a core/
periphery structure, changes in the concept’s core constitute examples of
conceptual change (Kitcher, 1988).

In what follows I use “conceptual change” to refer to the relation
between successive incommensurable theories of overlapping domains of
phenomena (for there is a change in the conceptual primitives in terms of
which the phenomena are represented and explained), as well as to the
relation between particular ancestor–descendant pairs of concepts
involved in these theory changes.

I would like to dispel, at the outset, several misunderstandings
concerning the claim that the history of science involves conceptual
change. It is important to note that the difference between knowledge
enrichment and conceptual change is not sharp. Theory changes lie in a
multidimensional space that includes clear cases of conceptual change and
of knowledge enrichment, as well as a variety of intermediate cases. Also,
the analysis of conceptual change endorsed here is not that of the early
writings of Kuhn and Feyerabend. These writers were committed to the
existence of radical incommensurability, in which theories before and
after conceptual change share no conceptual machinery. The incom-
mensurability that occurs in every case of historical and developmental
theory building I have personally studied is what in later work Kuhn
called “local incommensurability”—incommensurability that implicates
only some of the concepts that articulate successive theories (T. Kuhn,
1982). Finally, conceptual change does not occur suddenly. There is not a
moment of gestalt shift. It takes time for concepts to change, sometimes
centuries in the history of science, always years in the individual scientist
or student or child engaged in knowledge restructuring.

What’s at Stake

The existence of conceptual change, both in childhood and in the history
of science, raises some of the very toughest challenges to an account of
the origin of concepts. Characterizing the learning mechanisms that
underlie conceptual change is a formidable explanatory challenge. Many
classes of learning mechanisms that underlie the major share of knowl-
edge acquisition consist of selection or concatenation over an existing
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conceptual base. These include hypothesis testing, parameter setting,
association, correlation detection, and many others. Additional learning
mechanisms, of some other sort, must be implicated in conceptual
change, for the conceptual system that is their output cannot be expressed
in the conceptual base that is their input. Chapter 11 will address the
explanatory challenge, appealing to the Quinian bootstrapping processes
introduced in chapter 8 to address conceptual change from one theory to
an incommensurable one. Chapter 11 explores both historical and
developmental cases of conceptual change.

The distinction between conceptual change and knowledge
enrichment, along with the existence of conceptual change in childhood,
also raises a fundamental descriptive question for those of us who study
cognitive development: Which cases of knowledge acquisition involve
incommensurability? Another way of putting the same descriptive
question is: Historically, when is one theory incommensurable with a
successor? When a student of Galileo’s writes that ice mixed with salt and
water produces a higher degree of cold than a mixture of the same
amount of ice and water without the salt, is he saying something
deploying the same concept of cold as we have? Developmentally, when
are children’s beliefs formulated over concepts incommensurable with
ours? The preschool child tells us the sun is alive, or that buttons are alive
because they keep your pants up. The preschool child tells us that a grain
of rice weighs nothing at all, or that air is nothing and that air and steel
can be in the same place at the same time. Is the child making false
statements formulated over concepts shared with us? Or is the child
saying something true, formulated over different concepts from those
expressed by our use of the same terms? If it’s the latter, are the child’s
concepts locally incommensurable with ours?

The theory-theory is committed to these questions receiving com-
parable answers in the developmental cases as in the historical cases of
conceptual change. The child’s theory may not correspond to any his-
torically held adult theory, but what is meant by incommensurability, and
what counts as evidence for it, had better be the same if the theory-
theory is to have any merit. To address these questions, I begin with an
analysis of local incommensurability from the historical and philosophical
literatures, for this is where the notion first arose. In what follows I first
give a sense of what incommensurability is, drawing on historical
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examples. The historical differentiation of the concepts heat and temper-
ature from an earlier undifferentiated concept degree of heat (part of an
extended episode of conceptual change in which CS1 is an Aristotelian
theory of thermal phenomena and CS2 is the caloric theory) provides a
worked example of a conceptual change and lays the groundwork for
what evidence is required to establish episodes of conceptual change in
childhood. The rest of the chapter works through a parallel case of
conceptual change in childhood: the construction of a theory of matter in
which the concept material is differentiated from physically real, and the
concept weight from density.

Local Incommensurability

A good place to start is with Philip Kitcher’s analysis of incommensura-
bility (Kitcher, 1978; 1988). Theories are explicit, formulated in language
and other explicit symbol systems. The explicit symbols express concepts.
Therefore, incommensurability is a relation that holds between the lan-
guages that express theories and between the sets of concepts that artic-
ulate theories. Following Kitcher and Kuhn, I will explicate the idea of
incommensurability in terms of the languages that express successive
theories. To begin, Kitcher endorsed Kuhn’s thesis that there are episodes
in the history of science at the beginnings and ends of which practitioners
of the same field of endeavor speak languages that are not mutually
translatable. That is, the beliefs, laws, and explanations that can be stated in
the terminology at the beginning, in language 1 (L1), cannot be expressed
in the terminology at the end, in language 2 (L2). This is equivalent to the
claim that the propositions that can be formulated in terms of CS2 cannot
be expressed in terms of the concepts that articulate CS1.

As Kitcher explicated Kuhn’s thesis, he focused on the mechanisms
through which the referents of terms are fixed. He argued that there are
multiple methods for reference fixing. Many kinds of processes support
the causal connections between entities in the world and word meaning,
and some of these are theory-mediated. A theoretical community
expresses definitions, offers descriptions of referents, and draws on theory-
relative similarity to particular exemplars in determining the extensions of
its theoretical terms. Holders of any given theory presuppose that, for each
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term, its multiple methods of reference-fixing pick out one and the same
set of entities in the world. Incommensurability arises when an L1 set of
methods of reference-fixing for a single term is seen by speakers of L2 to
pick out two or more distinct entities. In the most extreme cases, the
perspective of L2 dictates that some of L1’s methods fail to provide any
referent for the term at all, whereas others provide different referents from
each other. For example, the definition of “phlogiston” as “the principle
given off during combustion,” fails, in our view, to provide any referent
for “phlogiston” at all. However, as Kitcher pointed out, in other uses of
“phlogiston,” where reference is fixed by the description of the pro-
duction of some chemical, it is perfectly possible for us to understand what
chemicals are being talked about. In various descriptions of how to pro-
duce “dephlogisticated air,” the referent of the phrase can be identified as
either oxygen or oxygen-enriched air.

Kitcher’s analysis played an important role in Kuhn’s reanalysis of the
incommensurability among successive theories, in which Kuhn aban-
doned the earlier Kuhn/Feyerabend notions of radical incommensura-
bility in favor of what he called “local incommensurability.” Kitcher
showed how contemporaries who speak incommensurable languages can
nonetheless communicate, whereas Kuhn and Feyerabend had insisted
that holders of incommensurable theories talked entirely past each other.
Kitcher argued that communication is possible between two parties so
long as one can figure out what the other is referring to and if the two
share some language. Even when L1 and L2 are locally incommensurable,
the methods of reference-fixing for many terms that appear in both lan-
guages remain entirely constant across them, and even in cases of mis-
match of referential potential, there sometimes will be some overlap of
referent-fixing mechanisms so that in some contexts the corresponding
terms in the two languages will refer to the same entities. This is sufficient
to provide enough common ground for some degree of communication,
including identifying cases of mismatch of referential potential.

Kuhn accepted much of what Kitcher said, while nonetheless crit-
icizing Kitcher for identifying communication with agreement on the
referents of terms. Communication requires more; it requires agreement
with what is said about the referents. Agreement on the referents of terms
is necessary but not sufficient for communication, and Kuhn argued that
the analysis of incommensurability goes beyond the mismatch of
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referential potential. This is why Kuhn analyzed incommensurability in
terms of translation.

Kuhn was concerned with a paradox. If speakers of putatively
incommensurable languages can always, with work, come to understand
each other, and if we can always, with work, figure out what entities
historical texts are referring to, why is it nonetheless true that two the-
ories may sometimes be incommensurable in a theoretically interesting
sense? In answering this question, Kuhn moved beyond the referential
functions of language. To figure out what a text is referring to is not the
same as providing a translation of the text. In a translation, we replace
sentences in L1 with sentences in L2 that have the same meaning. Even if
expressions in L1 can be replaced with co-referential expressions in L2,
we are not guaranteed a translation. For example, replacing every
mention of the name “Superman” in a story with “Clark Kent” would
preserve reference but would change the meaning of the text. In cases of
incommensurability, this process of replacing terms in L1 with co-
referential terms in L2 will typically replace an L1 term with one L2 term
in some contexts and other L2 terms in other contexts. But it matters to
the meaning of the L1 text that a single L1 term was used. For example, it
mattered to Priestley that all of the cases of “dephlogisticated” entities
were so designated; his language expressed a theory in which all deph-
logisticated substances shared an essential property that explained deriv-
ative properties. The process of replacing some uses of “dephlogisticated
air” with “oxygen,” others with “oxygen-enriched air,” and still others
with other phrases yields what Kuhn called a “disjointed text.” One can
see no reason that these sentences are juxtaposed. A good translation
preserves not only reference; a text makes sense in L1, and a good
translation of it into L2 makes sense in L2 as well.

That the history of science is possible is often offered as prima facie
refutation of the doctrine of incommensurability. If earlier theories are
expressed in languages that are incommensurable with our own, the
argument goes, how can the historian understand those theories and
describe them to us so that we understand them? Part of the response to
this challenge has already been provided. Although parts of L1 and L2 are
incommensurable, much stays the same across them, allowing speakers of
the two languages to figure out what the other must be saying. What one
does in this process is not translation but, rather, interpretation and
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language learning. The historian of science engages in a bootstrapping
process, noting the interrelated uses of terms in L1, seeing how they map
to phenomena, and engaging in modeling processes to construct a theory
that makes sense of this evidence. Once the historian has learned L1, he or
she can teach it to us, and then we can express the earlier theory as well.

Again this seems paradoxical. What is language learning besides
expressing the terms of the new language in the terms of the earlier
language (in the case of first language learning, into antecedently available
nonlinguistic concepts)? Resolving the paradox requires a different pic-
ture of language learning. Language learners sometimes learn a whole set
of terms together, at least partially interdefined, which at the beginning of
an episode of conceptual change are only partly interpreted in terms of
antecedent concepts. Recall the characterization of Quinian boot-
strapping in chapter 8. Across different theories, these sets of terms can,
and often do, cut up the world in incompatible ways. To continue with
the phlogiston theory example, one reason that we cannot express claims
about phlogiston in our language is that we do not share the phlogiston
theory’s concepts: principle and element. The phlogiston theory’s element
encompassed many things not picked out by our element, and modern
chemistry has no concept at all that corresponds to phlogiston theory’s
principle. But we cannot express the phlogiston theory’s propositions that
described phenomena involving combustion, acids, gases, and so on
without using the concepts of principle, element, and phlogiston, for
these concepts are all interdefined. We cannot translate sentences con-
taining “phlogiston” into pure 20th-century language because, when in
comes to using words like “principle” and “element” we are forced to
choose one of two options, neither of which leads to a real translation:

1. We use “principle” and “element”, but provide a translator’s gloss
before the text. Rather than providing a translation, we are changing
L2 for the purposes of rendering the text. The translator’s gloss is part
of the bootstrapping process whereby the concepts of L1 are taught to
the speakers of L2.

2. We replace each of these terms with different terms and phrases in
different contexts, preserving reference but producing a disjointed text.
Such a text is not a translation because it does not make sense as a whole.
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What, then, is the evidence for the existence of episodes in the
history of science in which successive theories are not mutually transla-
table because they are locally incommensurable? As mentioned above,
differences at the level of individual concepts implicated in cases of
incommensurability come in many different flavors, including differ-
entiations, coalescences, and changes in core. In addition, new primitive
concepts are created and important primitives are lost altogether in some
episodes of theory changes involving conceptual change. It is important
to note that conceptual change always involves whole systems of con-
cepts; one never finds differentiations implicating incommensurability in
the absence of coalescences, changes in core, and so on.

Characterizing such changes raises serious problems of both analysis
and evidence. Here, I will explore these problems in the case of just one
type of conceptual change: conceptual differentiation. Not all episodes in
which previously unnoticed distinctions come to be drawn implicate
incommensurability. Two-year-olds may not distinguish collies, German
shepherds, and poodles, therefore having an undifferentiated concept dog,
relative to adults, but if that is the only difference between the 2-year-
old’s and the adult’s concept dog, the two are not incommensurable.
There would be no mismatch of referential potential (i.e., the reference
fixing mechanisms for dog in both cases would be the same, and the
child’s and adult’s concept dog would have the same extensions), and they
would have the same meaning-determining conceptual roles. The cases
of differentiation involving incommensurability are those in which the
undifferentiated parent concept from L1 is incoherent from the point of
view of L2, a condition not met by the 2-year-old’s concept dog under
the assumption that the only difference between it and the adult concept
is that the child has not created subordinate concepts of breeds.

An Example: On the Differentiation of the Concepts
Heat and Temperature

Consider the claim that before the work of the Scottish physicist Joseph
Black in the mid-18th century, heat and temperature were not differenti-
ated. This would require that thermal theories before Black represent a
single concept, in some sense fusing our concepts of heat and tempera-
ture. In the language of our current theories, there is no superordinate
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term that encompasses both of these meanings; indeed, any attempt to
wrap heat and temperature together would produce a monster. Heat and
temperature are two different types of physical entities; heat is an
extensive quantity, whereas temperature is an intensive quantity. The
total amount of heat available in two cups of water is the sum of the
amounts of heat available in each, whereas if one cup of water at 80! F is
added to 1 cup at 100! F, the resultant temperature is 90! F, not 180! F.
Furthermore, heat and temperature are interdefined. A calorie is the
amount of heat required to raise the temperature of 1 gram of water 1! C.
Finally, the two play different and complementary roles in explaining
physical phenomena such as heat flow. Every theory since Black’s
includes a commitment to thermal equilibrium, the principle that tem-
perature differences occasion heat flow. This commitment cannot be
expressed without distinct concepts of heat and temperature.

To make sense of the claim that before Black heat and temperature
were undifferentiated, then, we must be able to conceive of how it might
be possible for there to be a single undifferentiated concept that is the
ancestor to both concepts. Such a concept must have some of the features
of each of the descendants, but it cannot simply be a superordinate to
them (because, as explained above, there is no single coherent concept
superordinate to heat and temperature in any theory from Black’s on). To
see how this could be possible requires analyzing the framework theory
scientists were working with, the phenomena they sought to explain, and
characterizing the concepts that articulated the theory and their
explanatory role. The task is parallel to the enterprise of characterizing
core cognition systems. As chapters 4, 7, and 8 argued, once we
understand the representations of parallel individuation, set-based
quantification, and the analog magnitude number system, we can char-
acterize precisely the concepts of number available to the prelinguistic
child. Analogously, once we understand the thermal theory any com-
munity of scientists was working with, we can answer the question of
whether it contained distinct concepts of heat and temperature.

One clue that heat and temperature might not be differentiated in a
given theory is that the scientists deploying the theory use only one word,
not two, in characterizing and explaining the thermal phenomena in its
domain. That is, L1 contains only one term, whereas L2 (any theory since
Black) contains two—“heat” and “temperature.” Undifferentiated
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language is a necessary consequence of a lack of conceptual differentia-
tion, but more than one representational state of affairs could underlie
any case of undifferentiated language. Lack of differentiation between
heat and temperature is surely different, at a representational level, from
mere absence of the concept of heat, even though languages expressing
either set of thermal concepts might have only one word—for example,
“hot.” A second representational state that might mimic non-
differentiation is the false belief that two quantities are perfectly corre-
lated. For example, before Black’s discoveries of specific and latent heat,
scientists might have believed that adding a given amount to heat to a
given quantity of matter always leads to the same increase in tempera-
ture,. Such a belief could lead scientists to use one quantity as a rough-
and-ready stand-in for the other, which might produce texts that would
falsely suggest that the two were not differentiated.

The only way to distinguish these two alternative representational
states of affairs (false belief in perfect correlation and absence of one or the
other concept) from conceptual nondifferentiation is to analyze the roles
that the concepts played in the theories in which there were embedded.
Marianne Wiser and I (1983) analyzed the concept of heat in the thermal
theory of the 17th-century Academy of Florence, the first group of scien-
tists to systematically study thermal phenomena, and we indeed found
evidence supporting the historians’ claim of nondifferentiation (McKie &
Heathcoate, 1935). The Academy’s publications used undifferentiated
language; they used “degree of heat” both in contexts in which we
would use “temperature” and in contexts in which we would use
“amount of heat.” The Academy’s heat had both causal strength and
qualitative intensity—that is, aspects of both modern heat and modern
temperature. The Experimenters (their self-designation) did not sepa-
rately quantify heat and temperature, and unlike, Black, did not seek to
study the relations between the two. Instead, they sought to relate a
single thermal variable, degree of heat, to mechanical phenomena. You
may think of this thermal variable, as they did, as the strength of the heat
and relate it to the magnitude of the physical effects of heating matter
(thermal expansion, state changes, and so on). Importantly (and a clue
that their system of concepts is different from ours), they also did
experiments on another thermal variable, degree of cold, and studied the
effects of the strength of the cold on matter (contraction of matter, state
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changes, and so on). In no theory since Black is cold conceptualized as a
real entity on a par with heat).

The Experimenters used the thermometer (an instrument they
invented) to measure degrees of heat and cold, but they did so by noting
and comparing the rate and/or range of change in the level in the
thermometer, rather than focusing on the final level attained by the
alcohol in their thermometers. Their thermometers were calibrated with
respect to each other rather than to fixed points. To discover fixed
points (e.g., the boiling and freezing temperatures of water) requires a
concept of temperature differentiated from heat. In sum, the experi-
menters did not quantify either temperature or amount of heat, and
unlike Black, they certainly did not attempt to relate two distinct
thermal variables. Finally, their theory necessarily provided a different
account of heat exchange from that of the caloric theory or that of
modern thermodynamics. The Experimenters did not formulate the
principle of thermal equilibrium (which they could not have done
without separate concepts of heat and temperature), and indeed their
account required no distinct concepts of these variables. Wiser and
I dubbed their theory the “source-recipient theory.” The source-
recipient theory had distinct concepts of heat and cold, conceptualized
as distinct substances with opposite mechanical effects. Although the
Experimenters saw themselves as opposed to the medieval Aristotelians,
the source-recipient theory required the Aristotelian notion of a natural
state. It is in the nature of entities with higher degrees of heat or higher
degrees of cold than the natural state to transmit heat or cold to the
entities they are in contact with. The transmitted heat or cold then
caused the mechanical effects the Experimenters discovered, quantified,
and attempted to explain. They also speculated about the distinct ulti-
mate sources of heat and cold.

Black’s conceptual change included abandoning the concept of cold
as a kind of substance/energy with causal powers; the Experimenters’
cold suffered the fate of phlogiston—there is no such thing. Conceptual
differerentiations involving local incommensurability always accompany
other conceptual changes in the same network of interdefined concepts.
Because we can characterize the Experimenters’ theory in which the
undifferentiated concept that conflated heat and temperature played a
coherent role, we can be confident in ascribing this undifferentiated
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concept to these 17th-century scientists. No concept equivalent to the
Experimenters’ degree of heat plays any role in any theory after Black.

The Experimenters’ concept, which is incoherent from our point of
view, led them into contradictions that they recognized but could not
resolve. For example, they noted that a chemical reaction contained in a
metal box produced a degree of heat that was insufficient to melt paraffin,
whereas putting a sold metal block of the same size on a fire induced a
degree of heat in the block that was sufficient to melt paraffin. That is, the
block had a greater degree of heat. However, they also noted that if one
left the box with the chemical reaction in ice water, it melted more ice
than did the heated metal block, also left in the ice water for the same
amount of time. Thus, the box had a greater degree of heat. Although
they recognized this as a contradiction, they threw up their hands at it.
They knew that two different kinds of heat must be involved in these
two measures, but they could not resolve the paradox without differ-
entiating temperature from amount of heat. The chemical reaction
generates more heat but attains a lower temperature. The melting point
of paraffin is a function of temperature, whereas how much ice melts is a
function of the amount of heat generated. That holders of CS1 are
sensitive to and worried about contradictions that are easily resolved from
the point of view of CS2 is one source of evidence for the CS1–CS2 shift
and for its involving incommensurability.

Finally, the “huh???!” phenomenon mentioned in the previous
chapter provides one very good clue to a conceptual system that is
incommensurable with your own. Wiser and I (1983) read the Experi-
menters’ report of their “experiments with the thermometer” over 100
times before we got a hook on understanding their source-recipient
theory of thermal phenomenon. Such hooks are often things said or done
that make absolutely no sense to you. A principle of charity (the
Experimenters were wonderful scientists, being students and collabora-
tors of Galileo) requires that these made sense to them; and understanding
how this is possible may require bootstrapping a theory locally incom-
mensurable with your current theory, from whose vantage point the
statement or results are senseless. A major suite of the Experimenters’
studies involved characterizing the mechanical effects of cold on liquids
—water, oil, lemon juice, wines, and so on. I put this their way—they
saw the cold as flowing from a source into the liquids and having
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mechanical effects. Their tables of the course of thermal contraction and
then the expansion in the course of freezing as a function of the readings
of a thermometer did not make any sense to us, and that is because we
were trying to read the tables depicting the mechanical effects as a
function of the temperature of the liquids. But the numbers are impos-
sible seen this way. If this is what the Experimenters thought they were
doing, they should have put the thermometer in the liquid that was
freezing.

Wiser and I then focused on the diagram of their apparatus: the
thermometer was not placed in the liquid undergoing the change, but
rather in the ice-salt mixture. Huh?! The Experimenters were using the
thermometer to measure the strength of the cold (their language again),
not the temperature of the liquid (which, as we subsequently realized and
as I explained above, they could not have been doing anyway because
their thermometers were not calibrated to fixed points).

In Conclusion:

In sum, when we ask whether the language at one point in time (L1)
and the conceptual system it expresses (CS1) might sometimes be
incommensurable with a later language (L2) and conceptual system that
represents overlapping phenomena, we are asking whether there is a set
of concepts at the core of CS1 that cannot be expressed in terms of
CS2, and vice versa. We are asking whether L1 can be translated into
L2 without a translator’s gloss. Incommensurablity arises when there are
simultaneous additions, deletions, differentiations, coalescences, and
changes in type and core between CS1 and CS2, such that the undif-
ferentiated concepts of CS1 no longer play a role in CS2 (indeed, are
even incoherent from the lights of C2) and the coalesced concepts of C2
played no role in CS1. In cases of incommensurability, CS1 will lead to
unresolvable contradictions easily resolved in CS2, and holders of CS1
will say and do things that make perfect sense from the point of CS1
that are utterly inexplicable to holders of CS2 (the huh? phenomenon).

I now turn to whether there is evidence of exactly the same sort for
conceptual change in childhood.
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Conceptual Change in Childhood

I have encountered four major reasons that my colleagues doubt that
children’s conceptual systems may be incommensurable with those of
adults:

1. The very notion of incommensurability is incoherent, whether we are
talking about theory development in the history of science or in
childhood.

2. Adults communicate with children just fine, and psychologists who
study cognitive development depict children’s conceptions in the
adult language.

3. There is no way incommensurability could arise (empiricist version).
Children learn their language from the adult culture. How could
children establish sets of terms that are interrelated differently from the
interrelations adults have established among those sets of terms?

4. There is no way incommensurability could arise (nativist version).
Intuitive conceptions are constrained by innate principles that deter-
mine the entities we can represent, the entitites about which we can
learn. These innate concepts in turn become entrenched in the course
of learning.

It is worth dwelling on each of these arguments, although my
responses to them are implicit in what has come before. I have countered
the first objection (the incoherence of the notion of incommensurability)
by offering a positive analysis of what I mean by local incommensurability,
and have sketched what counts as evidence that there are episodes of
historical development in which it obtains. It is beyond the scope of this
chapter to say more about philosophical claims that the very notion of
incommensurability is incoherent. Ultimately, one’s analysis of concepts
constrains one’s stance toward the possibility of incommensurability. I will
return to this question in chapter 13, arguing that the very possibility of
conceptual change depends on whether and how conceptual role con-
tributes to concept individuation and content determination. I prefer to
work backwards here, arguing for conceptual change and specifying the
mechanisms that underpin it, and then taking up what consequences this
work has for how we think about concepts in chapter 13.
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The answer to the second objection (adults and children commu-
nicate just fine) should, by now, be clear. It is an empirical question just
how well adults understand preschool children. In cases of incommen-
surability, we are failing to do so. More important, incommensurability
does not require complete lack of communication. After all, the early
oxygen theorists argued with the phlogiston theorists, who were often
their colleagues or teachers. Locally incommensurable conceptual systems
can and do share many terms that have the same meaning in both lan-
guages. This common ground can be used to fix referents for particular
uses of nonshared terms (as in a use of “depholgisticated air” to refer to
oxygen-enriched air). Similarly, I discussed earlier how it is possible for
the historian of science to express in today’s language an earlier theory
that was expressed in an incommensurable language. We understand the
phlogiston theory, to the extent that we do, by interpreting the language
in which it was expressed, and this requires creating a conceptual system
that is incommensurable with ours (a bootstrapping process in reverse). In
creating or learning a translator’s gloss, we acquire a whole set of terms
together, each of which is only partially interpreted through concepts we
already possess. To the extent that the child’s language is incommensu-
rable with the adult’s, psychologists do not express the child’s beliefs in
the adult language. Rather, they interpret the child’s language, learn it,
and teach it to other adults. This is possible because of the considerable
overlap between the two, enabling the psychologist, like the historian, to
be interpreter and language learner.

The third objection (incommensurability could never arise, empir-
icist version) is even easier to dispel. The empiricist objection presupposes
that language is learned by constructing concepts from a preconceptual
theory-neutral vocabulary. Chapter 2 argued against this position. Of
course, children learn language from adults, but they bring the rich
conceptual resources of core cognition and of constructed intuitive
theories to the table. If cultures create representational systems that are
incommensurable with core cognition, then children must undergo
conceptual change to acquire these systems. In the process of doing so,
they may also create explicit intuitive theories that are incommensurable
with both core cognition and adult conceptual systems.

Finally, the fourth objection (incommensurability could never arise,
nativist version) is merely an argument for continuity. Any demonstration
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of CS1/CS2 pairs in which the latter differs qualitatively from the former
provides a counterexample. Cases of incommensurability in the history of
science provide an existence proof that continuity is not logically nec-
essary, and there now are many worked examples of conceptual change
in childhood. Stella Vosniadu and William Brewer (1992) showed that
preschooler’s flat-earth theory is enriched core cognition and they
demonstrated that children create novel, but consistent, synthetic models
as they attempt to get their mind around the culture’s claim that the earth
is round like a ball. For another example: by the high school years
youngsters have created a rich theory of the motion of macroscopic
objects that shares much with the impetus theory of the Middle Ages and
is incommensurable with Newtonian mechanics (McCloskey, 1983;
McCloskey, Caramazza, & Green, 1980). Similarly, Marianne Wiser
(1988) showed that adolescents create a thermal theory that has much in
common with the source-recipient model of the Florentine Experi-
menters, and is incommensurable with the molecular-based thermal
theories taught in junior and senior high schools; and Andrew Shtulman
(2006) showed that adolescents create a theory of evolution that is
incommensurable with the theory of natural selection. The case study in
this chapter concerns conceptual change in the children’s theories of the
material world.

The Case at Hand: Concepts of Matter, Weight, and Density

Jean Piaget discovered many phenomena that captivated generations of
developmental psychologists. One, the failure of infants at simple object-
permanence tasks, was discussed in chapter 2. Equally well known is his
discovery that preschool children are “nonconservers.” Ask a 5-year-old
to make two balls of clay such that each contains exactly the same amount
of clay, and the child will carefully create two balls as close to the same
diameter as she can make them. The child will agree that the two balls
have the same amount of clay, weigh the same, and take up the same
amount of space. If you flatten one into a pancake and ask “Do they still
have the same amount of clay (or weigh the same, or take up the same
amount of space), or does this one [the ball] have more or does this one
[the pancake] have more?” the child will claim that the ball has more clay,
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takes up more space, and weighs more than the pancake, pointing out its
greater vertical extent (or the child chooses the pancake, pointing out its
greater horizontal extent; Piaget & Inhelder, 1974). Nonconservation of
matter (amount of clay), weight, and volume by 5- and 6-year-olds has
been replicated literally hundreds, if not thousands, of times. Relatedly,
children of this age, as well as considerably older ones, say that a popped
piece of popcorn weighs more than the corn from which it was popped,
and that if you add a small bit of clay to a given clay ball, you don’t
change its weight. In one striking demonstration of nonconservation, 5-
and 6-year-old children judged that after a vertically oriented rectangular
object is turned on its side, it weighs less than when it was upright.

As any developmental psychologist who grew up in the 1960s or
1970s knows, Piaget argued that nonconservation derived from putative
deficiencies in the young child’s thought: failures of logic, failures in
the capacity to coordinate two dimensions (the greater vertical extent of
the ball is compensated for by the greater horizontal extent of the pan-
cake), failures in the capacity to go beyond the perceptually given. Pia-
get’s stage theory of cognitive development located developmental
changes at a very abstract domain-general level of description, explaining
performance on particular tasks, such as the conservation experiments, in
terms putative cognitive stages such as “preoperational thought.” But
those who have read The Child’s Construction of Quantities know that
Piaget and Inhelder actually gave two theoretical accounts of the phe-
nomena. They showed, first, how the transition from nonconservation to
conservation of amount, weight, and volume, plus the differentiation of
weight from density, was part of a change in children’s underlying theory
of matter; and then, second, they argued that the successive theories of
matter were constrained by the stage changes in children’s logical abilities.

Piaget’s and Inhelder’s (1974) first interpretation of the transition
from being a nonconserver to being a conserver falls within the theory-
theory of conceptual development. We may embrace this perspective (as
I do) while abandoning Piaget’s overall stage theory. Space precludes
rehearsing the reasons most developmental psychologists no longer agree
with Piaget’s stage theory of logical development. Most now reject
Piaget’s claims that the logical abilities of 4-year-olds are radically dif-
ferent from those of 10-year-olds, which in turn are radically different
from those of adolescents (see Carey, 1985a, 1985b; R. Gelman &
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Baillargeon, 1983, for reviews of the criticisms of Piaget’s stage theory). It
is the abandonment of the Piaget’s stage theory that made studies of
nonconservation go out of style. This is a pity. There may be no domain-
general constraints on the intuitive theories a 4-year-old, compared to an
adult, can construct. Nonetheless, 4-year-olds do indeed have a radically
different theory of matter than do adults, just as Piaget and Inhelder
argued. Indeed, the two are incommensurable. Furthermore, the
underlying theory change does account for the transition from non-
conservation to conservation of amount of matter, weight, and volume,
as well as for many other developmental changes in children’s explana-
tions for material phenomena.

The Preschool Child’s Intuitive Theory of Objects
and Substances—CS1

Intuitive theories are the conceptual structures that provide fodder for
explanation, and material cause is one of Aristotle’s four basic explanatory
modes (along with efficient cause, formal cause, and final cause). We
explain many fundamental phenomena by in terms of Aristotle’s material
cause, including appealing to substance kind—why a stick floats but a
fork does not; why a log placed into a fire burns but a chunk of solder
melts; why Coke tastes sweet but lemon juice tastes sour. Since ancient
times philosophers and scientists have offered theories of the basic sub-
stances from all things are made, varying from the Greeks’ earth, air,
water, and fire to the elements of Mendeleev’s periodic table. Although
young children are not systematizers, and do not seek the primitive
materials from which all else is built, nonetheless they surely offer
explanations of their world in terms of substance kind. My discussion of
CS1 develops two points. First, I review evidence that preschool children
represent substance kinds, and that they represent substance kinds as
ontologically distinct from object kinds. I conclude the discussion by
pointing out that crediting the child with the concept substance is not the
same as crediting the child with the concept matter.

By the time children are 3, they clearly distinguish between objects
and the substances from which they are made. By age 3 or 4, and in some
studies even by age 2, children project newly heard words ostensively
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defined over a novel object with an apparently nonaccidental shape on
the basis of shared object kind, but one defined over a formless chunk of
material over material kind (Prasada, Ferenz, & Haskell, 2002; see also
Imai & Gentner, 1997; Kalish & Gelman, 1992; Li, Dunham, & Carey, in
press; Soja, Carey, & Spelke, 1991). Soon, this distinction has become
entrenched, terms for substances have become full-fledged kind terms,
and children’s reasoning displays have become distinct ontological
commitments with respect to objects and substances. For instance, Susan
Gelman and Ellen Markman (1987) showed that preschool children
projected substance-relevant properties (e.g., melts when put in an
oven vs. burns when put in an oven) on the basis of shared kind labels
rather than on the basis of physical features. In these studies, preschoolers
were told that one chunk of a substance, called “gold,” had one such
property (e.g., would melt if placed in an oven), and a very different-
looking chunk, called “wood,” had a contrasting property (e.g., would
burn). They were then shown a third chunk that looked like the wood
but was called gold, and they were asked whether it would melt like this
gold or burn like this wood (indicating the original samples). Children
chose the substance with the same name rather than the same appearance,
but only when the property being projected was substance-relevant, such
as those in this example (as opposed to a property such as fitting through a
hole, where object size and shape were the relevant features of the
entities).

Carol Smith, Marianne Wiser, and I (Smith, Carey, & Wiser, 1985)
showed that even 3-year-olds know that object kind is not maintained if
an entity is broken into pieces, whereas substance kind is. Later, Terry Au
(1994; Au, Sidle, & Rollins, 1993) extended these results, characterizing
the depth of the preschooler’s understanding of the nature of substance.
Au explored Piagetian demonstrations of nonconservation more radical
than those described above, ones that probed not whether certain
measures of substance were conserved over changes of shape but whether
substance itself is seen to cease to exist if broken into pieces too small to
see. Piaget and Inhelder (1974) found that it was not until age 7 or 8 that
children agreed that dissolved sugar added to the weight of a cup of water
as much as did undissolved sugar, or that water with sugar in it would
taste sweet a few days later. Au reasoned that these Piagetian demon-
strations may underestimate children’s understanding because the
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demonstrations require an understanding of what balance scales measure
and an understanding of the locution “in two days’ time.” Au let children
taste the sugar and used their own locution for the taste, and used a more
intuitive reflection of weight (C. Smith et al.’s (1985) probe concerning
being heavy enough to make a cardboard bridge collapse—see below).
Au also spelled out the passage of time in terms of “going home, sleeping,
getting up, going to school, going home, sleeping.”

With these changes to the procedures, Au (1994) found much
greater understanding among young children than Piaget and Inhelder
had. First, she showed that 3- to 5-year-olds performed above chance
when reasoning about substance kinds whose superficial properties across
samples were radically different owing to the chunks’ being ground
into powders or even dissolved in a solvent, apparently vanishing.
Children argued that the substance continued to exist over these
transformations, and that a portion of the transformed substance main-
tained substance kind (e.g., was still sugar) and substance-relevant
properties (e.g., would taste sweet, would be healthy or unhealthy to
eat, would smell good or “yucky”when burned, and so on). Importantly,
they did not conserve object-level properties over these transformations
—properties such as total weight or likelihood of being blown away by a
puff of air. Furthermore, if shown that a cup of water was not heavy
enough to make a cardboard bridge collapse, but that the same water
with a tablespoon of sugar was now heavy enough to do so, preschool
children were above chance at predicting that a cup of water with a
tablespoon of dissolved sugar would also make the bridge collapse.

Au’s data complement those of Gelman and Markman, showing that
children’s representations of substances go beyond representations of
perceptual properties. Thus, these data undermine Piaget’s claims that
preschool children are “perceptually bound.” Au argued further that
preschool children have made a theoretical construction of substances as
homogeneous—wood is wood, through and through. She claimed that
representations of substance homogeneity underlie children’s ability to
conserve substance across transformations as extreme as grinding into a
powder or dissolving it. In support of this argument, she showed that
judgments of whether there could be portions of a substance too small to
see and whether substance-relevant properties were conserved over
dissolution held together coherently. For example, in one of her studies,
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she asked children to make a forced-choice judgment about what hap-
pens when sugar is stirred into water: (1) it breaks up into tiny pieces, so
small you can’t see them, or (2) it disappears. Those who chose the
former option were more likely than chance to judge that the dissolved
sugar would still taste sweet and cause the bridge to collapse; those who
chose the latter were at chance.

Nailing the coherence of these judgments, Au and her colleagues
(1993) carried out a series of training studies in which 3- to 5-year-old
children were explicitly taught that substance is conserved through
grinding into a powder, and through dissolution, because substances can
be broken into tinier and tinier pieces until each piece is too small to see.
This training improved young children’s performance on all of the tasks
sketched above in which they had to reason about the sameness of
substance-relevant properties over these transformations. This training
also improved their reasoning about contamination; those who had
received the training were more likely to judge that it is not OK to drink
some juice in which a cockroach or a piece of “doggie-doo” had been
dropped and removed than were those who had not.

The data reviewed above show that preschool children undoubtedly
distinguish objects from the substances from which they are made, and
that they take object kinds and substance kinds to be ontologically
distinct. Substances survive Pelletier’s universal-grinder test (are homo-
geneous) where objects do not, and substance kind supports different
inferences from object kind. Also, it is important to note that in Au’s data,
the performance of 6- to 8-year olds is markedly better than that of the 3-
to 5-year-olds. In Au’s own writings, she qualifies her conclusions
regarding preschoolers’ understanding of the homogeneity of substance
(especially its survival of transformations in which it loses macroscropic
perceptual properties) by saying “ “some preschoolers as young as
3 understand . . . ” or “young preschoolers have a fragile understanding.
. . . ” On many specific questions in Au’s experiments, 3-year-olds
perform at chance or succeed only when large chunks are broken into
smaller ones that are still visibly the same material. Nonetheless, that the
training interventions have the effects they do, as well as the robust
success of about one-third of the 3- to 5-year-olds, supports Au’s claims
that young preschoolers have the capacity to understand substance kind as
maintained over such radical transformations.

384 The Origin of Concepts



A robust understanding of substance and substance kind is available to
children by the end of the preschool years, but does this really challenge
Piaget and Inhelder’s more general point that children do not construct a
representation of matter until many years later? Matter is a highly theory-
laden concept, one which may merely be a descendent of the child’s
concept substance. To credit the child with a concept of matter we must
show that they distinguish material from immaterial physical entities, and
explore the inferential work this distinction does for the child. Below I
argue for a C21-CS2 transition between the preschooler’s intuitive theory
of the physical workd articulated in terms of object and substance kinds
and the intuitive theory of some adolescents and adults in which material
entities have been differentiated from the class of physically real entities. In
CS2, but not CS1, the extensive concept weight has been differentiated
from the intensive concept density, this differentiation supporting the
differentiation of the concepts matter and physically real.

The Conceptual Change

Please pause and dwell on this puzzle: Given that by age 6 or 7, children
robustly succeed on Au’s tasks, why do they maintain that the weight of a
ball does not change if a small piece of clay is added to it? Why do they
maintain that the weight of a ball changes if it is flattened, and that a
popped piece of popcorn is both bigger and heavier than the kernel from
which it was popped? These are “huh?” phenomena that suggest at the
very least that the child is using the word “weight” differently from us,
and maybe even that the child may have concepts locally incommensu-
rable with ours. A generation of psychologists, including me, became
interested in conceptual development upon first encountering the phe-
nomenon of nonconservation. My first experiments (Carey, 1972)
involved trying to make sure that children understood what was being
asked. I studied conservation of amount of liquid. I provided two small
identical glasses and had the child make it so that one had more juice to
drink in it the other. I then asked whether they could tell, just by
drinking, which one was which. That is, I explained “more to drink” in a
quantity-conservation task by having the child drink two portions of juice
through a straw (when they couldn’t see the amounts), to make sure that
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they understood what “more to drink” meant—that is, the quantity that
took longer to drink took more effort to drink. All 5- and 6-year-olds
understood this. Then I switched to differently shaped glasses and estab-
lished whether children would actually choose the glass with markedly less
juice as the one with more to drink—the juice in the tall skinny glass—if
given a choice to drink just one. I reminded them that they were to
choose choosing the glass with more to drink—the one that would take
longer, require more effort to drink (using the locutions they had used
when they explained how they could tell which was more when they had
drunk through the straws). Nonconservers chose the glass that actually had
less juice—the quantity in the tall thin glass rather than in the low wide
glass—even though they had seen three times as much juice poured into
the wide glass than into the tall thin glass. Then I let them drink both
quantities, such that the glass they judged had less juice to drink actually
took three times as long and three times as many sucks to finish. Indeed,
the quantity difference was exactly the same as they had discriminated
perfectly when they had told “just by drinking” which glass had more
juice. One-third failed to notice the contradiction, and one-third noted it
but could not resolve it (Carey, 1972). I had attempted to make entirely
clear what question I was asking (what “more to drink” means) and to
provide counterevidence to their generalization that, of two glasses, the
one with greater vertical extent had more to drink. I put them into a state
of contradiction that they noticed but could not resolve. At this point I
realized that understanding the child’s conceptual system was going to be
difficult, and indeed, I worked on this case of conceptual change, among
others, for the next 15 years.

So why is the CS1 described by Au, in which objects are differen-
tiated from substances, and in which substances are conceptualized as
homogenous, not sufficient to support conservation of amount of sub-
stance, or conservation of weight, or of volume? The short answer is that
these conservations require explicit measures of the amount of matter,
which requires that the child not only conceptualize substance kind but
also take on the question of which physical entities (liquids, powders,
solids, gases, heat, light, electricity) are material and which are the
extensive measures of the amount of matter. Considering weight as a
measure of amount of matter requires more than conceptualizing sub-
stance as homogeneous. The child must be able to think of the total
amount of a portion of matter, the total weight of that portion of matter,
and the total volume of that portion of matter as the sum of the amounts,
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weights, and volumes of arbitrarily small subportions. The child must not
only conceive of substance as homogeneous; he or she must also be able at
least to entertain the possibility that it is continuous (infinitely divisible).

Au couches her results in terms of preschoolers’ understanding of the
continuity of matter, but her experiments fall way short of demonstrating
this. As I said above, matter is a theory-laden concept; the above experi-
ments do not show that preschool children and early elementary-age chil-
dren distinguish between material and immaterial physical entities. Also, a
continuous theory of matter is opposed to a particulate theory, a theory
which posits a minimal unit, such that further division does not maintain
material kind. Our particulate theory also posits space between particles of
even the most solid of materials. Clearly none of the above demonstrations
show that (or ever test whether) preschool children have a theoretical
commitment to either a particulate or a continuous theory of matter.

To establish that the phenomenon of nonconservation reflects a CS1
that is incommensurable with the CS2 that is the commonsense adult
theory, we must describe CS1 and CS2, detailing the conceptual changes.
The rest of this chapter takes on this challenge. I shall ask whether (and
when) children create a representation of matter when they represent
matter as continuous, and what they take to be the central features of
material (as opposed to immaterial) physical entities. In particular, I shall
ask when weight and occupying space come to be seen as central features
of material entities that distinguish them from immaterial ones; and when
each is conceptualized as an extensive variable that provides a measure of
amount of matter; and when these variables are differentiated from
density, an intensive variable along which substance kinds characteristi-
cally differ from each other. And I shall ask how these concepts are
interrelated in development. Only then will we be in a position to
address the CS1–CS2 shift with respect to whether it reflects conceptual
change in childhood.

A Plausible False Start

As I mentioned above, Piaget and Inhelder (1974) argued that the
developmental transition from nonconservation to conservation reflected
a theory change, and they attempted to characterize the conceptual
changes involved. Consider the nonconservation of weight. Many wri-
ters faced with the Piagetian nonconservation phenomena, including
Piaget and Inhelder themselves, interpreted them as reflecting a lack of
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differentiation between two kinds of bigness—big in size and big in
weight. This hypothesis is certainly consistent with children’s judgments
that the weight of a ball of clay or a rectangular block changes when its
vertical extent changes, and that a piece of popped corn weighs more
than the original kernel. Carol Smith, Marianne Wiser, and I (C. Smith et
al., 1985) set out to test this hypothesis by seeing whether children would
make judgments on the basis of size that adults would make based on
weight, and vice versa. We found that children as young as 3 years old
had perfectly differentiated concepts of size and weight. For instance,
when deciding whether a given object would fit into a box, even 3-year-
olds ignored weight, and when deciding whether an object would make
a sponge bridge collapse, they ignored size. Furthermore, judgments
were no less accurate when size and weight were not correlated than
when they were—judgments concerning very light large objects or very
heavy small objects were as accurate as those for very heavy large objects
and very light small objects. If the two concepts were even partly
undifferentiated, relative values on one dimension should intrude on
judgments based on the relative judgments on the other dimension.
Furthermore, young children’s nonconservation judgments do not reflect
the false belief that size differences are good predictors of weight dif-
ferences. When asked to judge relative weights, they always pick up or
weigh the objects; they never think it is sufficient just to look at them.

Piaget and Inhelder (1974) claimed a second conceptual change in
this domain—a change from a conceptual system that lacked the concept
of density altogether to one that included that concept. They claimed
that children do not achieve the concept of density until they reach the
stage of formal operations in adolescence, for before then they lack the
mathematical tools to represent ratios and proportions—tools needed to
represent intensive quantities explicitly. As we will see below, there is
truth to these hypotheses, but Piaget and Inhelder aren’t quite right.
Children in the grips of CS1 have an undifferentiated concept of weight/
density, rather than lack representations of density at all.

I review these false starts to illustrate a point: documenting cases of
conceptual change requires testing hypotheses concerning what changes
at the level of individual concepts might underlie the visible changes in
behavior we observe. And, as I shall also illustrate, just as in the historical
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cases, to be confident in our analysis we must characterize the theories in
which the concepts are embedded.

An Undifferentiated Weight/Density Concept

So, if an undifferentiated size/weight concept does not underlie Piagetian
nonconservation of weight, what does? To answer that question, we
need a fuller characterization of the child’s concept of weight, including a
characterization of the conceptual system within which it functions. As
shown above, young children represent weights of objects, have mapped
this property to the words “weight” and “heavy,” and know some causal
consequences of weight. There is, however, a crucial nondifferentiation
involving weight. While weight is perfectly well differentiated from size,
it is undifferentiated from density. After demonstrating that this is so, I
shall try to show you how that could be so. I shall argue that in CS1,
weight is not seen as an intrinsic property of all matter. Differentiating
weight from density is part of a conceptual change in which material
entities are distinguished from nonmaterial ones; matter comes to be seen
as continuous; and weight, as an extensive quantity, comes to be taken to
be (along with occupying space) a core defining property of material
entities. I shall show how these conceptual changes are mutually sup-
portive, and I shall provide evidence from within-child analyses that they
reflect a coherent theory change.

Density is a ratio, weight to volume, and like all intensive quantities,
it is not additive. The density of a given chunk of matter is not the sum of
the densities of the materials that make it up, but rather is an average of
them. It is only when children have differentiated weight from density
that they can solve Piaget’s popcorn problem, appealing to the change
in density (rather than in weight) resulting from the popping. The
conceptual change implicated here is deeply parallel to the change
within thermal concepts between the time of the Florentine Experi-
menters and Black (see above). From the point of view of any conceptual
system in which weight and density are differentiated, an undifferentiated
weight/density concept is incoherent, just as an undifferentiated heat/
temperature concept is incoherent from the point of view of any rep-
resentational system that has constructed extensive measures of heat and
intensive measures of temperature. Weight is an extensive quantity and
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density is an intensive quantity, and furthermore, they are interdefined.
Density equals weight divided by volume. The parallels in these two cases
demonstrate the fruits of considering intuitive theories from the vantage
point of analyses of explicit historical theories.

We require evidence in three steps to support the claim that the
concepts of weight and density are not differentiated by young children.
First, to rule out the possibility that young children simply lack the
concept of density, we must show that heaviness relativized to size plays
some role in their judgments. Second, we must show that judgments
based on weight intrude on those where density is the relevant factor, and
vice versa; and that there are no contexts in which each concept is
appropriately drawn upon. And third, we must sketch the conceptual
system that supports these judgments in which the undifferentiated
concept plays a systematic and fruitful inferential role.

Consistent with Piaget and Inhelder’s (1974) claims, albeit for
younger children, Smith, Wiser, and I (C. Smith et al., 1985) found that
many young children (3- to 5-year-olds) appear to lack the concept of
density. We asked children to compare objects on the basis of the
heaviness of the kind of stuff they are made of, or to sort painted objects
on the basis of material (a task that requires accessing the density of the
unknown material—e.g., to recognize that a small heavy object must be
made of a different material from a big light one). Just as Piaget and
Inhelder would have predicted, all of their judgments were based on total
weight alone. But just slightly older children’s judgments suggested a
conflation of the concepts of weight and density. To explore this pos-
sibility systematically, we created a series of tasks, both verbal and non-
verbal, that required children to distinguish absolute heaviness from
heaviness for size. In these tasks, heaviness for size was often presented as a
property of substance kind, which, as we have seen above, even pre-
school children have differentiated from object kind. Heaviness was
presented as a property of objects. For example, we showed children pairs
of objects made of different metals and asked “Which is heavier?” or
“Which is made of the heavier kind of metal?” Nonverbal tasks involved
predicting which objects would make a sponge bridge collapse (weight
being the relevant factor) and sorting the objects into steel and aluminum
families (density being the relevant factor). In the steel-and-aluminum-
family task, children were first shown several pairs of identical-size
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cylinders, and it was pointed out that steel is a much heavier kind of stuff
than is aluminum. This was true within each pair, even though the
absolute weight of the smallest steel cylinder was less than the absolute
weight of the largest aluminum one. Then children were given new pairs
of objects and asked to sort them into the steel and aluminum families.
Children under 8 (and many older children as well) showed intrusion of
absolute weight on judgments we would base on density, judging a large
aluminum object as made of a heavier kind of stuff than a small steel one,
and sorting a large aluminum object into the steel family. Conversely,
they made density intrusions into the weight task, sometimes judging that
a small steel object would make the bridge collapse, while correctly
judging that a larger, heavier, wood object would not. These mutual
intrusions are what one would expect if the concepts of weight and
density are not differentiated.

Carol Smith and her colleagues (Smith, 2007; Smith et al., 1997;
Smith, Snir, & Grosslight, 1992; Smith & Unger, 1997; Snir, Smith, &
Grosslight, 1993) have corroborated these results with other simple tasks,
extending the ages tested from 8 up to 12. They provided children with
scales and with sets of objects that varied in volume, weight, and material
kind and asked them to order the objects by size, by absolute weight, and
by density (explained in terms of heaviness of the kind of stuff). The
ordering required no calculations of density. For instance, if one object is
larger than another, but they weigh the same or the smaller is heavier, we
can infer without calculation that the smaller is denser. Prior to
instruction, few children as old as 12 were able to correctly order the
same set of items differently on the basis of absolute weight and density.
Mistakes reveal intrusions of weight into the density orderings and vice
versa. These results are underscored when children are asked to depict in
a visual model the size, weights, and densities of a set of such objects.
Only children who show in other tasks that they have at least partially
differentiated weight and density produce models that depict, in some
way or other, all three physical magnitudes.

Another task, based on one originally introduced by Piaget and
Inhelder, provided convergent evidence for the lack of differentiation of
weight and density. Smith, Wiser, and I showed children large balls of
clay and of play dough. The balls were identical in size, and children all
agreed that the ball of clay weighed much more. We then divided each in
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half, formed one half of the material of each into smaller, equal-size balls,
and asked if the clay ball would still weigh more than the other. Children
were asked to imagine repeating this process, and asked whether the clay
ball would always weigh more than the other one. Only half of the 8- to
9-year-olds agreed that no matter how small the balls, the clay ball would
always weigh more. Rather, the younger children and half of the older
ones argued that when the balls got small enough, they would weigh the
same as each other—nothing at all. For these latter children, the intensive
quantity of weight/size and the extensive quantity of total weight of each
ball were not distinguished.

Besides reflecting the weight/density lack of differentiation, this
thought experiment also suggests young children fail to conceptualize
matter as continuous and as necessarily weighing something, such that the
total weight of a portion of matter is the sum of the weights of its
arbitrarily small constituents. Weight in CS1 is the felt weight of the total
object, not a measure of arbitrarily small portions of matter. Constructing
such a concept of matter supports the differentiation of the extensive
concept of weight from the intensive concept of density.

Just as the Experimenters’ undifferentiated heat/temperature con-
cept led them to contradictions they could not resolve, children’s
weight/density concept leads them into outright contradiction. We
presented children in this conceptual state with two bricks, one of steel
and one of aluminum. Though the steel was smaller, the two weighed
the same and children were shown that they balanced exactly on a scale.
They were then challenged: “How come these weigh the same, since
one is so much bigger?” They often answered, “Because that one [the
steel] is made of a heavier kind of stuff,” or “Because steel is heavier.”
They were then shown two bricks of steel and aluminum, now both the
same size as each other, intermediate in size between the original two
bricks, and asked to predict whether they would balance or whether one
would be heavier than the other. Now they answered that they would
weigh the same, “Because the steel and aluminum weighed the same
before” (see Figure 10.1). Children give this pattern of responses because
they do not fully realize that the claim that a given steel object weighs the
same as a given aluminum object is not equivalent to the claim that steel
and aluminum weigh the same, even though they also understand that if
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a small steel objects weighs the same as a large aluminum one, this is
possible because steel is heavier than aluminum. It is not that children are
unmoved by the contradiction in these assertions. They, as well as adults,
strive for consistency, and they are upset by this contradictory state of
affairs. Just as the scientists in the Florentine Academy were unable to
resolve the contradictions owing to their undifferentiated heat/temper-
ature concept, so too children cannot resolve the contradictions resulting
from their undifferentiated weight/density concept.

S: Steel is heavier kind of stuff

E: Will these weigh the same or will one weigh more?

S: They will weigh the same, because they weighed the same before.

E: How can they weigh the same?

Figure 10.1. (From Carey, 1991). Eliciting a contradiction the child with an
undifferentiated concept weight/density cannot resolve. Carey, S. (1991). Knowledge
acquisition or conceptual change? In S. Carey & R. Gelman (Eds.), The epigenesis
of mind: Essays on biology and cognition ( pp.133–169). Hillsdale, NJ: Erlbaum.
Reprinted with the permission.
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How an Undifferentiated Weight/Density Concept Functions
in Thought

The previous section outlined some of the evidence that 6- to 12-year-
old children have a concept that is undifferentiated between weight and
density. But how could such a concept function in a CS1, given the
contradictions it leads the child into? The short answer is that the contexts
in which children deploy their weight/density concept do not, in gen-
eral, elicit these contradictions. This is the same answer as for the
Experimenters’ concept degree of heat (undifferentiated between heat and
temperature) or for Aristotle’s concept speed (undifferentiated between
average and instantaneous velocity).

A sketch of the purposes for which children do use their concept
provides a slightly longer answer. The child’s concept is heaviness (degree
of weight). Children appeal to the heaviness of objects to explain some
effects of those objects on themselves or on other objects, including but
not limited to how heavy the objects feel when they lift them. A heavier
object is more likely to break something it is dropped on, resist move-
ment more when pushed, and so on. “Heavy,” like other dimensional
adjectives such as “big,” is a relative term. Something is heavy relative to
some standard, and the child can switch fluidly among different standards.
An object can be heavy for objects of that type (e.g., a heavy book),
heavy for the objects on the table, heavy for me but not my mother, or
heavy for objects of that size. For the child with an undifferentiated
weight/density concept, relativizing heaviness to a standard determined
by size is no different from other ways of relativizing heaviness in order to
assign the adjective “heavy” or “light.” Children differentiate weight and
density as they realize that heaviness/size is an independent physical
magnitude, one that is an intrinsic property of kinds of stuff and is related
systematically to distinct phenomena in the world.

Achieving the full answer to how children can have an undiffer-
entiated weight/density concept that functions effectively within their
conceptual system requires characterizing that conceptual system (CS1).
Noting that weight is undifferentiated from density in CS1 does not
exhaust the differences between the child’s concept of weight and the
adult’s; indeed, it could not. Because an undifferentiated weight/density
concept is incoherent from the point of view of a CS2 in which the two
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are differentiated, it must be embedded in a very different conceptual
system to function coherently in the child’s thought. We should expect,
therefore, that the child’s concept of heaviness differs from the adult’s in
many ways, beyond its being undifferentiated between weight and
density. And indeed it does.

The Material/Immaterial Distinction

The concepts weight and density are embedded in an intuitive theory of
matter. Weight is proportional to the quantity of matter; density is the
ratio of the quantity of matter to volume. The concepts weight, volume,
density, matter, and quantity of matter (mass) have a long intellectual history
(Jammer, 1961; Toulmin & Goodfield, 1962). Since Newton, the central
concept is mass. As historian of science Max Jammer tells the story, the
late 19th century saw the flowering of the substantial concept of matter,
which identified matter with any entity with mass. The concept of
inertial mass had been formulated by Kepler and systematized by
Newton, who also fused it with the medieval concept of quantity of
matter. A typical statement from the beginning of the 20th century was,
“If I should have to define matter, I would say: Matter is all that has mass,
or all that requires force in order to be set in motion” (Charles de
Freycinet, 1896, quoted in Jammer, 1961, p. 86). According to this view,
mass is the essential property of matter and provides a measure of the
quantity of matter. Clearly, prior to the formulation of the concept mass,
having mass could not be taken as the essence of material entities. Prior to
Newton, weight was not differentiated from mass (the weight of a por-
tion of matter is a function of its mass and the strength of the gravitational
field). And indeed, Jammer claims that prior to the formulation of the
concept of mass, weight was not seen as a candidate measure of the
quantity of matter, nor was having weight (even on earth) seen as nec-
essary and sufficient for an entity’s being material. The Greeks and the
medieval scholastics had concepts of matter and weight that were dif-
ferent from those of post-Newtonian physicists. According to Jammer,
Aristotle had no concept of the quantity of matter, and he saw weight as
an accidental, and partly intensive, property of some material entities, akin
to odor. Even if the Greeks had had a concept of the quantity of matter,
weight could not have served as its measure because some material
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entities, such as air, were thought to possess intrinsic levity. For the
Greeks, weight was not even a single extensive quantity. There were no
fixed units of weight. In practical uses, even within the same nation,
different substances were weighed in terms of different standards. Further,
the weight of material particles was thought to depend on the bulk of the
object in which they were embedded. That is, Aristotle thought that a
given clump of clay would itself weigh more when part of a large quantity
of clay than when alone. Neither did the alchemists consider weight to
reflect the quantity of matter; they fully expected to be able to turn a few
pounds of lead into hundreds of pounds of gold. Density was also taken to
be an irreducible intensive quality, like color, odor, and other accidents of
matter. Density was not defined as mass/volume (or weight/volume)
until Euler did so. What was actually quantified by the ancients was
specific gravity (the ratio of the weight of a given volume of a substance to
the weight of the same volume of water), not density. For example,
Archimedes never used a term for density in his writings.

If weight was not taken to be an essential property of material
entities, what was? Jammer details many proposals. Euclid proposed
spatial extent—length, breadth, and depth. This was one dominant
possibility throughout ancient Greek and medieval times. Galileo listed
shape, size, location, number, and motion as the essential properties of
material entities—spatial, arithmetical, and dynamic properties. The
spatial notions included impenetrability; that is, material entities were
seen to uniquely occupy space. In another thread of thought, material
entities were those that could physically interact with other material
entities. Again, weight was seen as irrelevant; according to this view, heat,
while weightless, is certainly material. Finally, another line of thought
posited that being inert, or passive, was the essence of matter. This view
was the precursor to considering mass as the criterial property of matter;
material entities are those that require forces for their movement or forms
for their expression.

The substantial concept of matter (the identification of matter with
mass) occupied a brief moment in the history of science. Since Einstein,
the distinction between entities with mass and those without is not taken
to be absolute because mass and energy are intra-convertible. It is not
clear that the distinction between material and immaterial entities plays
an important role in today’s physics, given the existence of particles with
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no rest mass, such as photons, which are nevertheless subject to gravity;
and as Jammer has pointed out, the concept of mass itself is far from
unproblematic in modern physics.

Given the complex history of the concepts matter, weight, mass, and
density,what CS2 should we be probing for in the child? Ours would be a
good bet; that is, that of the nonscientific adult. What is the adult’s
intuitive concept of matter, and how is it related to the commonsense
concepts of weight and density? Although this is an empirical question, I
shall make some assumptions. I assume that commonsense physics dis-
tinguishes between clearly material entities such as solid objects, liquids,
powders, and gaseous forms of known material kinds (e.g., steam), on the
one hand, and clearly immaterial entities, such as abstractions (e.g.,
numbers, virtues) and mental entities (e.g., ideas), on the other. Adults
also conceptualize quantity of matter. Probably, the essential properties of
matter are thought to include spatial extent, impenetrability, weight, and
the potential for causal interaction with other material entities. Most
probably, the majority of adults do not realize that these four properties
are not perfectly coextensive. Weight is seen as an extensive property of
material entities, proportional to quantity of matter, whereas density is an
intensive property, a ratio of amount of matter to volume. This view is
closely related to the substantial conception of matter achieved at the end
of the 19th century, but it differs from that in not being based on the
Newtonian concept of mass and being unclear about the status of many
entities (e.g., air, heat, and so on.)

There are two reasons commonsense physics might be identified so
closely with one moment in the history of science. First, in general,
commonsense science has as its domain everyday phenomena; it is not
the grand metaphysical enterprise of the ancient Greek and medieval
philosophers. For example, in two relevant aspects of intuitive physics,
commonsense science has been shown to accord with the concepts
employed in the first systematic exploration of the relevant domains of
phenomena. Commonsense theories of motion share much with medi-
eval impetus theories (e.g., McCloskey, 1983), and commonsense ther-
mal theories share much with the source-recipient theory of the
Florentine Academy (e.g., Wiser, 1988). The commonsense theory of
matter I attribute to adults in our culture is similarly close to the ordinary
phenomena lay people use their framework theory to explain.
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A second, specific, reason to credit adults with the material/
immaterial distinction, in which weight is conceptualized as an extensive
measure of amount of matter, is that both the impetus theory of motion
and the source-recipient theory of thermal phenomena require just this
concept of quantity of matter. The impetus theory posits a resistance to
impetus that is proportional to quantity of matter, and the source-
recipient theory of heat posits a resistance to heat that is proportional to
quantity of matter. That scientifically untutored adults hold these theories
is one reason to credit them with a pre-Newtonian concept of quantity of
matter. Also, the developments of theoretical physics find their way into
commonsense physics, albeit at a time lag and in a watered-down and
distorted version. The mechanisms underlying this transmission include
the assimilation of science instruction (however badly), making sense of
the technological achievements made possible by formal science and
learning to use the measuring devices of science, such as scales and
thermometers.

When and How Children Draw the Material/Immaterial Distinction

The problem we face is ubiquitous in studies of conceptual development
Many properties children represent will distinguish some material entities
from some immaterial ones. Before we credit the child with a material/
immaterial distinction, we must assess more fully whether there is any
concept with enough overlap of extension and conceptual role with the
adult concept matter to credit children with that theory-laden concept.

As we saw in chapters 2 and 3, infants represent coherent, separately
moveable objects in terms of properties that we take as reflecting
materiality. Most salient in this regard is solidity, which is represented in
the form of the constraint on motion that one object cannot pass through
the space occupied by another. Infants also represent generalizations
concerning motion that we would attribute to amount of matter—larger
objects move less far than smaller objects when contacted by a given
object moving at a given speed. However, these generalizations are not
enough to credit infants with a distinction between material and
immaterial entities, for these generalizations are more likely formulated
over the concepts of object and object size, not matter and amount of
matter.
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Material entities encompass other forms of matter besides solid
objects. What we would need to see to credit infants or young children
with a material/immaterial distinction is that they treat different forms of
matter alike with respect to some material-relevant properties. Also, we
would need to see evidence that the relevant distinction is material/
immaterial and not merely physically real/unreal. We can see what’s at
issue by considering two claims from the literature. First, David Estes
and colleagues (Estes,Wellman, &Woolley, 1989) claimed that preschool
children know that mental entities are immaterial. Second, Piaget (1960)
claimed (and Rheta DeVries, 1986, endorsed the claim) that until age 8 or
so, children consider shadows to be material. These works credit the
young child with one true belief (ideas are immaterial) and one false belief
(shadows are material) formulated over the concept of material.

What Estes and his colleagues’ (1989) important studies actually
showed was that children understand that objects (e.g., cookies) differ
from mental entities like thoughts or mental images (e.g., of cookies)
with respect to properties we know to derive from the material/imma-
terial distinction. These include objective perceptual access (can be seen
by both the child and somebody else) and causal interaction with other
material entities (cannot be moved or changed just by thinking about it).
Objective perceptual access and causal interaction with other material
entities, like uniquely occupying space, are properties that in our con-
ceptual system are central to the material/immaterial distinction.
Although Estes did not study other forms of matter, it is very likely that
children would treat noncohesive forms of matter such as liquids and
powders as they do cookies in this regard. On the other hand, children
would also most likely treat nonmaterial entities such as shadows, heat,
and light as they do cookies, suggesting that the distinction tapped in
these studies might better be glossed as physically real/mental represen-
tation rather than material/immaterial.

The Piagetian claim is based on children’s statements like the fol-
lowing: “A shadow comes off you, so it is made of you,” “It’s always
there, but the darkness hides it,” and “The light causes the shadow to
reflect; otherwise it is always on your body.” Huh? DeVries studied 223

children, ages 2 to 9. None of the younger children and only 5% of the
8- and 9-year-olds understood that shadows do not continue to exist at
night, in the dark, or when another object blocks the source causing the

Beyond Core Object Cognition 399



shadow. Virtually all children spoke of one shadow being covered by
another, or of the darkness of two shadows being mixed together,
making it impossible to see the shadow, even though it was still there.
Again, these results show that children attribute to shadows some
properties of what we take to be material entities (i.e., independent
existence and permanence)—properties we assume they would assign to
liquids and powders as well as objects. But again, the relevant distinction
may be physically real/unreal rather than material/immaterial; after all,
shadows are physical entities rather than mental or abstract ones.

Howwould we decide whether children represent the conceptmatter?
First, we must explore more systematically the extension of the child’s
concept, tying them to conceptual distinctions we know children repre-
sent that might form the core of a material/immaterial distinction. We
must also explore what children take to be a measure of quantity of matter.

To establish whether children represent the material/immaterial dis-
tinction Carol Smith and I (Carey, 1991; Smith, 2007; Smith et al., 1997)
explored whether material-dependent properties of objects are attributed
to nonsolid substances. Given that even infants expect that nonsolid
substances (sand and salt) should not pass through the space occupied by
solid objects, we expected that preschool children would also generalize
the solidity constraint to liquids. We showed 4- to 12-year-old children a
box, and asked them to imagine a cube of wood and a cube of steel, each
cut so that it just fits into the box and fills it completely. The question
posed to the children was whether the wood and the metal could both fit
into the box at the same time. All were certain that the answer was no.
We then asked them to imagine the box filled with water, and asked
whether the water and the steel cube could fit into the box at the same
time; again, all but one 4-year-old was sure that the answer was no; this 4-
year-old believed the water could be compressed (Carey, 1991). Thus, by
age 4 children certainly consider liquids and solids on a par with respect to
their uniquely occupying space, consistent with the claim that they unite
material entities under a single category. However, other data from our
lab, and from many others’ labs, belie that conclusion.

As a second attack on the problem of characterizing the existence
and extension of a concept of material entities, Smith and I have each
elicited 4- to 12-year-old children’s judgments concerning what entities
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in the world “are made of some kind of stuff,” thus attempting to ground
the distinction with the concept of substance characterized by Au in the
studies described above. In one illustrative study (Carey, 1991) I intro-
duced children to the issue by telling them that some things in the world,
such as stones and tables and animals, are made of some kind of stuff, are
material, and are made of molecules whereas other things that we can
think of, like sadness and ideas, are not made of anything, are not
material, and are not made of molecules. Thus, I elicited the distinction I
was after with clear examples of material and immaterial entities and with
a locution they would surely understand (made of some kind of stuff) and
locutions they might have learned (are material, are made of molecules).
I then asked the children to sort the training examples (stones, tables,
sadness, ideas) and new entities (car, tree, sand, sugar, cow, worm,
Styrofoam, Coca-Cola, water, dissolved sugar, steam, smoke, air, elec-
tricity, heat, light, shadow, echo, wish, and dream) into a pile of material
entities and a pile of immaterial entities (the entities were presented
verbally, their names written on cards and read to the child). I credited
children with the material/immaterial distinction if they sorted objects,
liquids, and powders as material and wish and dream as immaterial, and
provided a relevant justification for their sort. The pattern of judgments,
as well as the justifications, provided evidence for what children took the
essential properties of material entities to be.

At all ages, children sorted the car, tree, and Styrofoam as material
and the wish and dream as immaterial, showing that the examples and
locutions at least tapped an object/nonobject distinction. However, for
60% of the 4-year-olds and 25% of the 6-year-olds, this task elicited no
evidence of a material-immaterial distinction. Some children systemati-
cally applied a distinction between inanimate objects, on the one hand
(judged as being made as some kind of stuff), and everything else, on the
other hand. These children denied that gases, liquids, powers, animals,
electricity, heat, light, echo, and shadows are material entities (half of the
4-year-olds). A few answered randomly. The data suggest that a concept
of material kind encompassing all solids, liquids, and powders is not
represented by all preschoolers. Of course, this task may have failed to
elicit a distinction that was nevertheless represented by these young
children. They may have taken “made of some kind of stuff” to mean
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“manufactured,” for instance. But these data at least show that the rel-
evant concept is not readily accessible or not mapped to the locution
“made of some kind of stuff.”

Still, almost half of the 4-year-olds, three-fourths of the 6-year-olds,
and all of the 10- and 12-year-olds sorted all liquids, solids, and powders
as material and denied that the wish and dream were, demonstrating a
material/immaterial distinction or a physically real/unreal distinction.
Nonetheless, their sorts revealed a very different distinction than that
tapped by this task in the case of scientifically naïve adults. Clearly,
weighing something, or having mass, was not taken as a criterial property
of material entities. Only one of the 40 children provided an adult sort,
judging all entities with mass as material and all massless entities as non-
material. Some of the oldest children took mass to be criterial, but thought
gases to be massless. But all of the remaining children sorted on the basis of
physical reality and/or having physical consequences. These children
judged an entity material, made of some kind of stuff, made of molecules
if it could be seen, touched, or had physical effects on other objects.
This led to heat, echos, shadows, light, and electricity to be classified as
material. Children with such sorts (the majority of 6- and 10-year-olds)
appealed to perceptual accessibility of the entities they judged material—
you can see and feel them. (It is important to note that, for the most part,
children did not apply a single criterion systematically.) For example, a
child might judge heat to be material because one can feel it, and light
because one can see it, but deny that shadows and echoes are material, in
spite of the fact that these entities can also be perceived. The child has clear
examples of material entities—objects, liquids, powders—and a set of
properties that distinguish these from clearly immaterial entities; and the
child has not yet systematized these properties into a consistent set of
criteria. The differentiation of physically real from material had begun;
these children do not judge all physically real entities on their lists as made
of some kind of stuff, as material, as made of molecules, whereas they do
judge all liquids and solids so. In sum, the majority of preschool children
and some 6-year-olds had not begun to construct a concept of material
entities, and virtually all of the 6- to 10-year-olds who had begun to do so
had not fully differentiated material from physically real.

Smith and her colleagues (Smith, 2007; Smith et al., 1997) include a
matter-sorting task in the pretests of most of their curricular interventions
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with junior high school students, and they corroborate these findings.
Prior to systematic instruction, only about 10 % of the highest science-
track junior high school students include air and exclude heat as material
when asked to sort according to the material/immaterial distinction. Like
the younger children described above, even up to ages 12 and 13, chil-
dren justify judgments of materiality by appeals to perceptual access and
causal interaction with other material entities. By this age children cer-
tainly draw a distinction between prototypical material entities, on the
one hand, and mental entities and abstractions, on the other, but material
and physically real are not fully differentiated.

That children do not take having mass or weight as central to being
material plays two roles in my argument here. First, it is part of the
evidence for the undifferentiated concept material/physically real. Second,
it is likely that coming to see that weighing something as central to
materiality is part of the process of constructing a measure of matter, and
constructing a measure of matter is part of what drives the differentiation
of material from merely physically real. This type of mutual dependence
is typical of bootstrapping episodes, in which concepts are acquired in a
suite together.

A Digression: An Undifferentiated Air/Nothing Concept

Until age 12, more than three-fourths of the children tested in our sorting
tasks deny that air is made of some kind of stuff, deny that air is material,
deny that air is made of molecules. In the same set of questions about
whether steel and wood, or steel and water, could be in a box at the same
time, we also probed children’s intuitions concerning whether air and the
box-filling steel cube could be in the box at the same time. Virtually all of
the 4- and 6-year-olds, and about half of the 10- and 12-year-olds, said,
“Yes, they could,” explaining that “air doesn’t take up any space; air is all
over the place,” “Air is just there—the metal goes in, air is still there,”
“Air isn’t anything,” and so on. One said simply, “Air isn’t matter.”

One could take these data as suggesting that children have another
false belief about matter, in addition to the false belief that shadows are
material—namely, that air is not material. Although this belief is easy
enough to state, a moment’s reflection reveals it to be bizarre. If air is not
material, what is it? Perhaps children consider air to be an immaterial
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physical entity, like an echo. But several said outright. “Air is nothing,”
or “Air isn’t anything.” However, air” is not simply synonymous with
“nothing” or “empty space,” for children this age know that there is no
air on the moon or in outer space, that one needs air to breathe (and
hence spacesuits and scuba gear), that wind is made of air, and so on.
Indeed, in a different interview in which we probed whether children of
this age considered dreams and ideas to be made of some kind of stuff, an
interview in which “air” was never mentioned, several different children
spontaneously offered “air” as the stuff of which dreams and ideas are
made. This set of beliefs is formulated over another undifferentiated
concept, air/nothing or air/vacuum—part of the interrelated concepts of
CS1 that are locally incommensurable with the adult CS2.

Interim Conclusions: Distinguishing Material from Immaterial Entities

Preschool children distinguish solids, liquids, and powders, on the one
hand, from entities such as wishes and dreams, on the other, in terms of
properties related to the distinction between material and immaterial
entities. These include uniquely occupying space, not being changeable
by thought alone, being perceptible, and having the capacity to interact
causally with other entities. By age 6, most children, and all children
from age 8 on up, have related this distinction to the concept stuff or
substance, but they do not yet see weight or uniquely occupying space as
necessary features of material substances. Virtually all children who
deemed solids, liquids, and powders material also judged some
weightless entities that do not take up space (electricity, heat, light,
echoes, or shadows) material. These data reflect an undifferentiated
concept material/physically real.

Even though children do not consider weight and occupying space a
necessary property of material/real entities, nonetheless perhaps they
consider these to be properties of prototypical material/real entities
(solids, liquids, and powders). If so, volume or weight might be con-
sidered a measure of the amount of matter, at least for these entities, and
coming to measure matter might be part of the process through which
children differentiate material from physically real. Carol Smith and her
colleagues (Smith, 2007; Smith et al., 1985; 1992; 1997) now have
copious data showing that young children do not expect even this
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relation between materiality/reality and weight or materiality/reality and
occupying space. The phenomenon Smith discovered turns out to be one
of the keystones to understanding the conceptual change between CS1
and CS2. It is a genuine “huh?” phenomenon, even though it doesn’t
necessarily strike one as such at first glance.

When given the choice “weighs a lot, a tiny amount, or nothing at
all,” young children judge that a single grain of rice, a single lentil, a single
grain of sugar, or a small piece of Styrofoam weighs nothing at all. This
phenomenon is related to the Piagetian observation that young children
claim that adding a small piece of clay to a ball does not change its weight.
Virtually all children judge Styrofoam to be material in the sorting task,
and virtually all of these children judge that if a piece of Styrofoam is
small enough, it will weigh nothing at all—0 grams. By now we have
engaged hundreds of adults and children, aged 4 through 12, in a thought
experiment in which they imagine a piece of Styrofoam being cut in half,
cut in half again, until the remaining piece is too small to see. The
question is whether we will ever arrive at a piece that weighs nothing.
Below age 10, most children claim that point to be reached when the
piece is still visible, and even half of the 12-year-olds claim that a piece
too small to see will weigh nothing at all.

This may seem a fairly innocuous error, reflecting a concept of weight
closely tied to felt weight. After all, such a small piece will feel like nothing
at all and have no measurable weight on any scale the child knows any-
thing about. But these data show that children, like the ancient Greeks, do
not take weight as a truly extensive property of substances. They do not
conceive of the total weight of an object as the sum of weight of arbitrarily
small portions of the substance of which it is constituted. This is one very
important way in which the child’s concept degree of heaviness differs from
the adult’s concept weight. The child’s degree of heaviness is neither sys-
tematically extensive nor systematically intensive, as is required if the
child’s concept is undifferentiated between weight and density.

Matter’s Homogeneity and Continuity

As sketched above, Au showed that by age 3 (some children) to 6 (virtually
all children) understand that there can be pieces of substance too small to
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see and that some properties of material kinds (e.g., sweetness, capacity for
contamination) and some properties of the total amount of material (e.g.,
weight) are conserved even in the face of dissolution in a solvent. Children
who affirmed that substances can be broken up into pieces too small to see,
or who were taught so, were more likely to make these judgments. She
concluded that preschool children represented matter as homogeneous
(same at all points) and continuous (infinitely divisible), and that each
portion, however arbitrarily small, maintains material properties.

The weight-thought experiment sketched above should engender
some doubts about those conclusions. Au showed that children under-
stand that the properties of the aggregate (sweetness, total weight, con-
tamination, etc.) are maintained when the total aggregate is ground into
powder or dissolved, but she did not show that children thought each
portion maintains these properties. Four other results, dating back to
Piaget and Inhelder (1974), confirm that it is not until age 12 or so that
children simultaneously construct a concept of matter and take matter to
be continuous (Carey, 1991; Smith et al., 1985; 2005). Of course, matter
is not continuous, in the sense of being infinitely divisible, because matter
is particulate. However, a particulate theory of matter follows, develop-
mentally, a continuous theory, and as Smith has argued persuasively,
requires the prior construction of a continuous theory.

The four results:
(1) As described above, children do not maintain the relative weights

of two equal-size portions of material (e.g., clay and play dough) through
repeated division, and they do not maintain that a portion of material,
obtained by dividing a portion that does weigh something in half, will
weigh something. Although this phenomenon reflects a conception of
weight as an accidental feature of some physical objects, it may also reflect
problems with representing matter as continuous—that is, as repeatedly
divisible maintaining its essential properties. To explore the latter possi-
bility, we have carried out a series of related thought experiments.

(2) Most directly, we asked children whether a given portion of play
dough was a lot or little bit of material, and asked them to imagine
cutting it in half and half again, each time repeating the same question.
After several repetitions, we asked whether we would ever reach a point
through repeated division that there was no material. Children under 8
claimed that there is point reached where there is no matter at all.

406 The Origin of Concepts



(3) In a related thought experiment, children were asked whether a
piece of Styrofoam takes up a lot of space, a little space, or no space at all.
They then were asked to imagine the Styrofoam cut in half, half again,
half again, and so on, each time. By age 6, all children understood the
locution “take up space,” judging that the large piece took up quite a bit.
But until age 12, half of the children judged that continued halving
would yield a piece of Styrofoam so small that it took up no space at all.

(4) Many elementary aged children lack the geometric construction
of space that defines points that may or may not be occupied by material
bodies. This fact could explain why children failed the above thought
experiment, and so we devised one last thought experiment to probe
children’s understanding of the continuity of matter. We showed chil-
dren a steel cylinder, told them it was made of iron and was solid, and
asked if they could see all the iron. Virtually all children, age 6 and older,
said no, because there was iron inside and we can only see the surface.
We then asked them to imagine repeated halving, asking of each resultant
half whether one could see all the metal now. The question was whether,
if our eyes or a microscope were powerful enough, for any given piece of
iron we’d ever get to a piece small enough that we could see all the iron
in at. Again, until age 12, half of the children said that we would
eventually reach a piece where we could see all the iron.

The two thought experiments about continuity of matter occupying
space and each piece always having an “inside” are quite different from
each other. Yet there was strong within-child consistency on these two
measures. Those 6- to 10-year-olds who judged that repeated halving
would yield a piece of Styrofoam that occupied no space were the same
children who judged repeated halving would yield a piece of iron where
we could see all the iron, and those who denied one, denied the other.
Almost all 12-year-olds succeeded on both tasks. We concluded that it
was not until age 12 that American middle-class children have consoli-
dated a continuous theory of matter.

Measures of Matter

Smith (2007) points out that if weight in CS1is felt weight, represented in
some analog magnitude format and not differentiated from density, then
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children with CS1 should not understand the measurement of weight.
Although they may know how to place objects (or themselves) on a scale
and read out the numbers, they should not understand that the total
weight of an object is an additive function of the weights of nonover-
lapping portions of matter that constitute the object. To explore what
children understood about weight and volume measurement, she
showed children a 3 · 3 · 3 cm cube in balance with 9 1 gram weights on
a scale. Thus, the volume of the object was 27 cc and the weight was 9
grams. The child was simply asked what the weight of the object was and
what its volume was. Children who have not yet differentiated weight
from density (assessed by the measures described above, such as being
unable to order four cylinders both by weight and by heaviness of the
metal from which they are made) failed this task.

Conclusions

To establish that children undergo conceptual change in the course of
conceptual development, one must first characterize successive con-
ceptual systems, providing evidence that one precedes the other devel-
opmentally. One must demonstrate that the two systems are
incommensurable, characterizing the concepts in each that can not be
expressed in terms available in the other. One must confirm that each
provides a coherent, mutually constraining system of representations
through which the child makes sense of the world. Finally, one must show
that CS2 is indeed difficult for children to achieve, as required by
incommensurability. I have discharged all of these obligations. Let me
review.

As Carol Smith points out, the explanatory agenda of CS1 and CS2
differ. In CS1, the child is concerned with delimiting physical reality,
distinguishing real entities from abstractions and from the world of the
mind, and understanding the causal interactions that obtain among
physically real entities. Physically real entities include inanimate objects,
animals, liquids, powders, shadows, echos, heat, and gases such as steam,
and there is indeed much to learn about the causal potential of each kind
of entity. In CS2, the material world has been differentiated out of the
world of the merely physical real, although this differentiation does not in

408 The Origin of Concepts



itself implicate incommensurability. After all, even in CS2, material
entities are a subset of physically real entities. But the explanatory agenda
of CS2 is completely new, including explaining why entities that weigh
different amounts might be the same size, explaining which objects sink
and which float, explaining thermal expansion, explaining what is in
common among ice, water, and steam, and so on.

Incommensurability requires change at the level of individual con-
cepts, such that a whole set of interrelated concepts are mutually adjusted
together.

$ Differentiations that implicate incommensurability include:
(1) undifferentiated concept weight/density, which is neither system-
atically intensive or systematically extensive, being resolved into an
extensive, additive concept weight and an intensive concept density
(i.e., weight per unit volume); and (2) undifferentiated concept air/
nothing being resolved into the concepts air, a gaseous form of matter,
and vacuum, space unoccupied by matter.

$ Coalescences include solids, liquids, and gases being analyzed as dif-
ferent forms of a unitary ontological kind—matter.

$ Changes in the cores of concepts include: (1) matter/substance—from
perceptual access and capacity for causal interactions to having weight
and occupying space; (2) weight—from property of some real entities
to necessary property of all matter, providing extensive measure of
amount of matter.

Thus, the change from CS1 to CS2 implicates the construction of a
new ontological kind, matter. The concept matter plays no role in CS1.
Weight and volume come to be seen as extensive variables that provide
measures of amount of matter, and weight comes to be differentiated
from density. The undifferentiated concept weight/density functions
coherently in CS1, but plays no role whatsoever in CS2 (indeed, is
incoherent from the point of view of CS2).

Carol Smith, in explaining the incommensurability, asks us to
imagine telling children “Matter is all that which has weight and occupies
space.” This sentence, which holders of CS2 deem to be true, cannot be
expressed in CS1, for CS2 has no concept of matter, nor of weight
(distinguished from density), nor of occupying space (in the sense of
filling a location specified in some Euclidean coordinates). Holders of
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CS1, making sense of this sentence best as they can, would deem it false,
for they know of clear examples of physically real objects made out of
some kind of stuff that they believe weighs nothing. Conversely, the
concepts they would be entertaining are not expressible in CS2. When
the child says “This grain of rice weighs nothing at all,” she is expressing a
true statement in terms of CS1. Although we can translate this sentence
into CS2 by replacing “weighs” with “has a felt weight,” this translation
does not fully capture the child’s concept, for her felt weight does not
have CS2’s weight as a constituent. The two systems are not mutually
translatable.

The claim that CS1 and CS2 are each coherent intuitive theories,
locally incommensurable with each other, has the consequence that there
should be within-child consistency in performance across the various
tasks that diagnose them. And indeed there is. Children’s judgments and
justifications on the open-ended matter/nonmatter sorting task predict
whether they have differentiated weight from density, whether they
conceive of matter, weight, and volume as continuous, and whether they
understand the measurement of weight and volume. Of course, within-
child consistency on this wide battery of tasks could be explained by the
facts that CS2 responses are more adult, and that smarter or better edu-
cated children are more likely to have learned (independently for each
piece) the adult responses on these tasks. While within-child consistency
is required by the conceptual change position, the abovementioned
demonstrations do not, by themselves, provide overly strong evidence for
it.

However, in the context of teaching interventions, stronger evi-
dence for the relevant within-child consistency is forthcoming. Basically,
one can see whether progress is made piecemeal or in an integrated
manner. In a teaching intervention testing bootstrapping models of
conceptual change to be described in chapter 11, Smith (2007) found that
the half of the 8th graders who began the intervention with a felt-weight
pattern of judgments on the Styrofoam thought experiment progressed
to an additive-extensive concept of weight after the intervention,
whereas for the other half of the 8th graders, their concept of weight was
unmoved. There was no difference among these two groups at pretests of
weight/density differentiation, matter/immaterial distinction, and mea-
surement of weight and volume. Smith then asked whether progress
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from on the CS1 pattern of judgment to the CS2 pattern of judgment on
the Styofoam thought experiment predicted performance on all of the
other tasks in the pretest/posttest battery. It did. The concepts developed
as an interrelated whole.

Finally, the CS1/CS2 shift certainly meets the difficulty-of-learning
test for conceptual change. Instruction concerning the phases of matter,
the measurement of matter, and weight/density differentiation usually is
part of the middle school (7th to 9th grade) curriculum. As in other
studies of the effectiveness of science instruction, systematic probing of
pre- and post-instruction conceptual change often finds little or no
progress. Even at the end of high school, many students do not command
CS2, and one study of adults studying to be elementary school science
teachers showed that a six-week curriculum was needed to induce CS2 in
them!

In sum, the transition from physical theory 1 (CS1) to physical theory
2 (CS2) is a case of conceptual change in childhood. Let us turn, in
chapter 11, to the explanatory challenge: How is the creation of new
conceptual systems, incommensurable with those that precede them,
accomplished?
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11
The Process of Conceptual Change

Chapter 9 argued that a numerical system that encompasses fractions and
decimals is incommensurate with the preschool child’s hard-won
numeral list representation of the positive integers. Similarly, chapter 10
argued that a physical theory in which weight is conceptualized as a
continuous quantity that provides a measure of the amount of matter, and
in which weight and density are differentiated, is incommensurate with
the preschooler’s physical theory, in which material is not differentiated
from physically real, and in which the concept of heaviness conflates
those of weight and density. In each case, I characterized the structures of
two successive conceptual systems, CS1 and CS2. I characterized the
incommensurabilities; I provided evidence that children hold each as
coherent, stable, symbolic structures; and I showed how hard it is for
youngsters to master the respective CS2s. To distinguish the two
CS1–CS2 transitions, I will call the successive numerical systems
Numerical System 1 (NS1; numeral list representation of integers) and
Numerical System 2 (NS2; rational number), and I shall call the two
Physical Theories 1 and 2 (PT1 and PT2). In both cases, many high
school students in the United States have not made the CS1–CS2 tran-
sition, in spite of extensive instruction.

Although, as expected, it is difficult to construct CS2 in each of
these two cases, it obviously is not impossible. Some students do so with
little instruction, and most can succeed with proper teaching. The
challenge to understanding the transition from CS1 to CS2 derives from
the incommensurability of the two successive conceptual systems. In cases
of incommensurability, the child cannot express the propositions of CS2
in the conceptual vocabulary of CS1. Simply telling children, “Fractions
are numbers resulting from dividing one number by another” clearly does
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not help because children limited by NT1 do not distinguish division
from subtraction and reject 2/3 as a number. Similarly, telling children
“All matter takes up space and has weight” does not help because those
who have only PT1 represent the world in terms of concepts that do not
include matter or weight, concepts that are incommensurable with those
the holder of PT2 is expressing with that sentence.

So how is a CS2 that is locally incommensurable with a currently
held CS1 that covers the same domain of phenomena constructed? In this
chapter I argue that Quinian bootstrapping underlies conceptual change,
illustrating with examples drawn from conceptual change in the history
of science as well as from conceptual change in childhood. But before I
turn to my positive proposal, I begin by mentioning three accounts of the
processes involved in theory construction that have wide currency: (1)
historically, CS2 is socially constructed, and each child’s individual
construction is also a social process; (2) the transition between CS1 and
CS2 is achieved via noting contradictions and inconsistencies within CS1
itself or as it applies to the world; (3) domain-general cogni-
tive development yields resources the child can draw upon for the pur-
pose of theory construction. None of these accounts is wrong; that is,
CS2s that transcend core cognition or antecedent conceptual systems are
usually (I would guess always) socially constructed; consistency seeking is
a major impetus for conceptual change; and certainly cognitive devel-
opment witnesses the expansion of information processing and concep-
tual skills that play a role in conceptual change. But each of these
proposals fails to fully engage the problem. In what follows I show how
each falls short of the account we want, and I then turn to my positive
proposal.

CS2 Is Socially Constructed

There is no doubt that both NS2 and PT2 were originally socially
constructed and that children acquire them via social processes. They
learn them from adults, through making sense of adult language, through
making sense of the artifacts whose development played a role in the
construction of each (e.g., mathematical notations, balance scales), and as
the result of explicit teaching. While this is certainly true, it does not
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solve the basic problem of how each child comes to master a set of
concepts that are incommensurable with those they currently command.

How do children learn facts and causal accounts that they do not
have the concepts to express? This is the basic problem of science
education. Consider the problem of how the child constructs the PT2
concept of material entity, superordinate to solids, liquids, and gases. The
child can certainly learn, if explicitly told or merely by noting the lan-
guage adults use, that solids, liquids, and gases are forms of matter.
However, they have no choice but to represent this newly learned fact in
terms of the PT1 concept of material, which is undifferentiated between
physically real and material. The core of the PT1 concept of matter is
visibility and tangibility—properties air, a gas, palpably does not have.
Being told that air is material may reinforce the physically real/causally
efficacious features of the undifferentiated concept, also reinforcing the
categorization of heat, electricity, and light as material. But the sentence
“Solids, liquids, and gases are forms of matter” implies that nothing else is
—that is, not heat, electricity, or light. Thus, the child is led to contra-
dictions he cannot resolve until he has constructed PT2. Initial learning of
new facts, by necessity, must be formulated in terms of the available
conceptual repertoire, or they must be represented as placeholder
structures, not yet interpreted in terms of available concepts.

Contradiction/Inconsistency Detection Is the Engine that Underlies
Conceptual Change

Without a doubt, striving for internal consistency is an important part of
the process of conceptual change. Children notice failed predictions and
internal contradictions among their beliefs. Carol Smith (2007) put
children with PT1 in the following quandary. They observed that 50
lentils placed on one side of a miniature seesaw weigh enough to topple
it, and they explained this by the weight of the 50 lentils. They then
observed that with a narrow enough fulcrum, 1 lentil will topple the card
—two related observations being inconstant with their belief that a single
lentil weighs 0 grams. They recognized this contradiction but could not
resolve it. To do so requires an extensive concept of weight. Similarly, as
shown in chapter 10, children with PT1 are concerned that they predict
that a given piece of steel will weigh the same as an identical-size piece
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of aluminum because two pieces of steel and aluminum (differing in size)
weighed the same before; and yet, when the pieces are placed on the
balance scale, this prediction is falsified. They are concerned, but they do
not have the conceptual resources to resolve such contradictions—to do
so requires distinguishing weight from density. Chapter 10 pointed out
that the scientists in the Florentine academy similarly recognized a
contradiction their undifferentiated concept degree of heat led them into.
Its resolution awaited 150 years of scientific development culminating in
Black’s differentiation of the concepts heat and temperature. The Experi-
menters were metaconceptually sophisticated scientists, students and
colleagues of Gallileo. Clearly, adult conceptual capacities do not by
themselves guarantee conceptual change.

Noting inconsistencies in one’s beliefs serves a motivational role,
even for preschool children, and also pinpoints where the cracks in PT1
are (i.e., in the above example, within the concept of weight). But
noticing inconsistencies does not provide an answer to the question of
where PT2 will come from. How is PT2 constructed, such that it enables
the child to differentiate the concepts weight and density and construct an
additive, extensive, concept of weight that is a measure of amount of
matter? Appeals to inconsistency detection do not begin to provide an
answer to this question.

Domain-General Cognitive Development

Piaget’s stage theory purported to describe changes in logical and meta-
conceptual capacities that occurred during childhood (e.g., only upon
reaching the formal operational stage of development in adolescence are
children able to reason in accord with propositional logic; see Flavell,
1963, for a tutorial on Piaget’s theory). Piaget believed that the domain-
general capacities that became available in adolescence made theory
building possible. Although Piaget’s own formulations of what changes
with development have fallen from favor (Carey, 1985a, 1985b;
R. Gelman & Baillargeon, 1983), there is no doubt that 10-year-olds
have many cognitive resources that 4-year-olds do not—resources that
play a role in their capacity for theory development. Increases in infor-
mation-processing capacity allow the child to consider more aspects of
some phenomenon at once, so as to notice contradictions and failed
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predictions (e.g., Case, 1991; Kail, 1986). Increased meta-conceptual
understanding of the nature of knowledge allows the child to monitor his
or her comprehension of phenomena (e.g..; Flavell, Speer, Green, &
Aughts, 1981), which also may contribute to knowledge restructuring.
And older children construct successively more sophisticated epis-
temologies, specifically of theoretical knowledge, which also would be
likely to play a role in the process of theory construction (e.g., Carey,
Evans, Honda, Unger, & Jay, 1989; Carey & Smith, 1993; D. Kuhn et al.,
1988).

Although it is true that domain-general cognitive development
yields new resources for theory development, it is also obvious that
cataloguing these resources does not provide a complete explanation
for the acquisition of NS2 or PT2. The concepts in NS2 and PT2
are domain-specific; they are constitutive of a particular theory or
mathematical system, embodying its ontological commitments and
articulating the explanations it provides for the phenomena in its,
and only its, domain. Development brings increased information-pro-
cessing capacities, plus greater meta-conceptual understanding of the
nature of knowledge, as well as greater meta-conceptual grasp of theories,
of mathematics, of learning, of evidence, and of the importance of belief
consistency. Nonetheless, these capacities cannot by themselves explain
how the child manages to create a concept of weight differentiated from
density, material differentiated from physically real, division differentiated
from subtraction, or the concept of a fraction.

What Else Is Needed?

To reiterate what we are looking for: We seek the processes by which
new domain-specific concepts, new representational systems, come into
being. The process may well be a domain-general one, but it must have
the form of taking specific input and outputting new representational
resources. Quinian bootstrapping is one such learning process. I make no
claims here that it is the only one. For example, the learning algorithms
that create Bayes-net representations of causal structure can, in certain
circumstances, posit previously unknown variables; and connectionist
associative learning algorithms create new systems of representations in
hidden layers. Rather, I focus on Quianian bootstrapping because it is a
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learning mechanism for which there is ample evidence in both the his-
torical and the developmental literatures and because it is capable of
explaining developmental discontinuities involving incommensurability.

We necessarily begin with a full account of the concepts available at
the beginning of this process, since the conceptual system that the child
begins with in any episode of conceptual change is the most important
source of the new one. In accounting for the 3-year-olds’ construction of
the integers, we began with a characterization of number-relevant core
cognition (the parallel individuation system, analog magnitude repre-
sentations, natural language quantification), as well as domain-general
skills such as the capacity to represent serial order. The most important
sources of NS2 and PT2 are NS1 (characterized in chapter 8) and PT1
(characterized in chapter 10). Nonetheless, we must not lose sight of the
problems posed by the local incommensurability of the core concepts of
each of these initial conceptual systems with the later ones. In neither case
are the new concepts of CS2 definable in terms of those available to CS1,
nor are those of CS1 definable in terms of those available in CS2. This is
the reason that neither presenting the tenets of CS2 as unproblematic nor
creating conflict between evidence and the child’s current concepts can
be the sole engine of conceptual change. What the child witnesses or
hears is assimilated to CS1.

Insights into the mechanisms underlying conceptual change in
childhood may be gleaned from accounts of the mechanisms underlying
conceptual change in the history of science. This literature suggests that
Quinian bootstrapping, as characterized in chapter 8, plays a central role
in all episodes of conceptual change. To remind you of the characteristics
of Quinian bootstrapping: (1) relations among symbols are learned
directly, in terms of each other; (2) symbols are initially at most only
partly interpreted in terms of antecedently available concepts; (3) symbols
serve as placeholders; (4) modeling processes—analogy, inductive infer-
ences, thought experiment, limiting case analyses, abduction—are used
to provide conceptual underpinnings for the placeholders; (5) these
modeling processes combine and integrate separate representations from
distinct domain-specific conceptual systems; and (6) these processes create
explicit representations of knowledge previously embodied in constraints
on the computations defined over symbols in one or more of the systems
being integrated.
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The philosopher Ned Block (1986) vividly illustrated the role of
placeholders in conceptual change:

When I took my first physics course, I was confronted with quite
a bit of new terminology all at once: “energy, momentum,
acceleration, mass” and the like. As should be no surprise to anyone
who noted the failure of positivists to define theoretical terms in
observation language, I never learned any definitions of these new
terms in terms I already knew. Rather, what I learned was how to
use the new terminology—I learned certain relations among the
new terms themselves (e.g., the relation between force and mass,
neither of which can be defined in old terms), some relations
between the new terms and old terms, and most importantly, how
to generate the right numbers in answers to questions posed in the
new terminology. (p. 648)

In this passage, Block appeals to the process of creating a placeholder
structure in which symbols are learned together, in terms of each other.
Some of the meaning of these new symbols is provided merely by their
conceptual role with respect to each other. Other meaning is provided by
their relations to antecedently known terms and concepts. Block is
describing the process I call Quinian bootstrapping, but he says little
about how these initially largely empty terms become meaningful—that
is, about the modeling processes and their consequences that are items
4 through 6 in the above list of characteristics of bootstrapping. Rather,
he seems to say that merely learning to use the new terminology is
sufficient for assigning meaning to it. This is not so, or at least there is
more to say about what is required for learning to use the new termi-
nology. What more there is to say is the topic of the rest of this chapter.

Cognitive-Historical Analysis

In the last quarter of the last century, a small number of cognitive sci-
entists joined forces with historians and philosophers of science in the
service of what Nancy Nersessian (1992) dubbed “cognitive-historical”
analysis. The source materials of the history of science (publications,
notebooks, lab records) are analyzed from the point of view of
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characterizing the conceptual changes the scientists were undergoing,
using and informing cognitive analyses of concepts and of the mechan-
isms underlying knowledge acquisition. Internalist history and philoso-
phy of science from the mid-20th century, as pioneered by Paul
Feyerabend, June Goodfield, N. K. Hanson, Mary Hesse, Thomas Kuhn,
Steven Toulmin, and others (e.g., Feyerabend, 1962; T. Kuhn, 1962;
Toulmin & Goodfield, 1962) set the stage for these analyses, for these
historians and philosophers characterized how successive conceptual
systems differed, and they spoke about the role that apprenticeship,
analogies, and modeling techniques played in these conceptual transi-
tions. However, the psychological theories available at the time (basically
behaviorism and Gestalt psychology—before the cognitive revolution of
mid-century) were not up to the task of adding much insight from
cognitive science (which did not yet exist) to their project. For example,
the best Thomas Kuhn (1962) could do, drawing on psychology to give
insight into conceptual change, was to appeal to gestalt shifts as in the
Necker cube or duck-rabbit illusion. Nersessian’s (1992) cognitive-
historical analysis, in contrast, has the explicit models of mental represen-
tation from artificial intelligence and cognitive psychology to draw upon.

I have already referred to some of the fruits of cognitive-historical
analysis. Work in this tradition places historical analyses and cognitive
analyses side by side, using one to illuminate the other. One example
already discussed was Wiser’s and my study (1983) of the Florentine
Academy’s thermal concepts, especially heat and temperature, pursued in
parallel with Smith’s, Wiser’s, and my study (C. Smith, Carey, & Wiser,
1985) of intuitive theories of matter, especially the concepts of weight
and density. The Florentine Academy was peopled by Galileo’s students,
the most sophisticated scientists of the day. The members of the Academy
were meta-conceptually aware and mathematically gifted experimenters
and theory builders. Wiser and I wanted to know whether, in spite of the
manifest differences between children and such adults, there are a set of
questions that receive the same answers in cases of conceptual change
involving both groups. How do successive conceptual systems differ from
one another? What counts as evidence for conceptual change in each
case? In what sense is CS2 descended from CS1? What, in representa-
tional detail, is an “undifferentiated concept.” As sketched in chapter
10, we argued that the differentiation of heat from temperature in the
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history of science and the differentiation of weight from density in
childhood provide parallel cases in which these questions receive com-
parable answers. The analysis of local incommensurability developed in
this book is the fruit of cognitive-historical analysis.

Example of Cognitive-Historical Analysis: Darwin

A collaboration between psychologist Howard Gruber and historian Paul
Barrett (Gruber & Barrett, 1974), in a case study of Darwin’s notebooks,
especially the Transmutation Notebooks, provides another example of
cognitive historical analysis). Gruber and Barrett discovered that Darwin
first formulated a theory of evolution (the Monad theory) that was
incommensurable with natural selection. According to the Monad the-
ory, a group of species related by a common ancestor is seen as analogous
to an individual animal; the Monad originates (is born) and eventually
dies. Environmental factors act directly on individuals to cause adapta-
tion; extinction is explained by the natural end of a Monad life line.
Within this framework, Darwin could (and did, for years) work on his
description of the exquisite adaptation of species to local environmental
variation. Notice that the Monad theory exemplifies the features of pre-
Darwinian theories of evolution described by the biologist and historian
of biology Ernst Mayr (1982). For example, the Modad theory held that
adaptive processes operated vertically, from parent to child, ensuring that
offspring would be better adapted to their environments than are their
parents (Mayr, 1982; see Shtulman, 2006, for evidence that mastering the
theory of natural selection requires conceptual change, and that students
initially assimilate it to a system of concepts shared by pre-Darwinians,
including the Monad theory).

In sum, Gruber and Barrett discovered that Darwin worked with a
novel pre-Darwinian theory of evolution for many years. Darwin needed
a theoretical framework within which to think about how well adapted
animals are to their environments (the main phenomenon his empirical
work explored), and it is no surprise that he began with the assumptions
common to all biologists at the time who even entertained the possibility
of evolution.

Gruber and Barrett also mined Darwin’s notebooks to draw lessons
about the dynamics of conceptual change. They emphasized that there is
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no one moment of conceptual change. Dramatically, Darwin had a page
in the Transmutation Notebooks where he wrote “Three principles will
account for all,” and then articulated the three main premises of natural
selection (heredity, variation, selection):

1. Grandchildren like grandfathers.
2. Tendency to small change, especially with physical change.
3. Great fertility in proportion to support of parents.

This page was embellished with exclamation points, stars, and other
evidence of Darwin’s great excitement (see Gruber & Barrett, 1974,
p. 156). Darwin then apparently forgot about these principles, continuing
to work and write in his notebooks from the vantage point of the Monad
theory for two more years. Gruber and Barrett dryly comment that these
facts undermine the view of conceptual change on which it occurs as a
single gestalt shift.

Gruber and Barrett did not have the main goal of characterizing the
process through which Darwin changed from the Monad theory to
natural selection. They endorse what others have said, pointing to his
analogy between natural selection and artificial selection and his analogy
between Malthus’s analysis of the implications of human population
explosions and resulting competition for scant resources and the effects of
competition for scant resources among members of animal species. Thus,
even without thorough cognitive analysis, one sees that Darwin engaged
analogical processes in constructing the theory of natural selection. It is
likely that if one took the Monad theory as CS1 and carried out a rich
historical cognitive analysis, one would discover other aspects of boot-
strapping processes.

Example of Cognitive-Historical Analysis: Kepler

Another case study of conceptual change within an individual scientist
stands out in its attempts to explicate the mechanism of change in
terms of the tools of cognitive science. Dedre Gentner and her
colleagues (Gentner, 2002; Gentner, Brem, Ferguson, Wolff, Markman,
& Forbus, 1997) have characterized Kepler’s CS1/CS2 shift, focusing
on one part of the bootstrapping process—Kepler’s use of analogy.
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Kepler was the transitional figure in physics and astronomy between
medieval times and Newton. The goal of the medieval Ptolemaic system
wasmathematical: to characterize themotion of the planets and stars so as to
explain the observed night sky. As is well known, the Ptolemaic systemwas
earth-centered, and the motions were conceived as perfect circles, with
thousands of epicycles (smaller circular orbits embedded within larger
circular orbits). This cumbersome systemwas indeed exquisitely accurate in
predicting the observedmotion of celestial bodies. In the Ptolemaic system,
the ontology of the heavens was entirely distinct from that of our world—
made of a fifth substance (quintessence), as opposed to the four worldly
substances of earth, air, fire, and water. Planets and stars were thought to be
eternal and unchanging, embedded in nested crystalline spheres, their
motion explained by the rotation of the rigid spheres themselves. The
motion of each sphere was caused by the motion of the nearest more outer
sphere, with the ultimate cause of motion being that of the outmost sphere
(the prime mover; explanation has to stop somewhere).

As Kepler began his work, three important developments had
undermined Ptolemaic/medieval astronomy. First, improved instru-
ments, including telescopes, had permitted the discovery of a supernova
and a comet, both contradicting the doctrine of the fixed heavens.
Second, the comet went through the locations of supposed crystalline
spheres, undermining their existence. The abandonment of the doctrine
of the crystalline spheres left the explanation of planetary motion open,
and Kepler considered the Stoic doctrine that the planets had some
internal source of motion, which he dubbed “anima motrix” (moving
soul). Third, Copernicus had published his monumental work over-
turning a geocentric universe. In the Copernican system, the center of
the earth’s supposed circular orbit was taken to be the center of rotation
of most (but not all) celestial bodies; the vast number of cycles and
epicycles needed to describe the motion of the six known planets and the
sun in the Ptolemaic system was reduced to 34.

Kepler is known for his three laws of planetary motion, including the
discovery that the orbits of the planets are ellipses, with the sun as one
focus. Kepler, like all other astronomers, was concerned with getting the
mathematical description of planetary motion right, and working
with the unparalleled observations of Tyco Brahe, his discovery of the
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elliptical orbit of Mars was his first major achievement. In his system, the
34 Copernican cycles and epicycles that sufficed to describe planetary
motion was further reduced to six ellipses. How and why Kepler dis-
covered his three laws of planetary motion is a fascinating story in the
history of science, but it is not the focus of Gentner and her colleagues’
work. They stress that Kepler’s importance in the history of science goes
way beyond his discovery of these three laws. Kepler predated Newton’s
integration of celestial phenomena with earth-based physics, and for-
mulated a precursor to the Newtonian concept of gravity. It is this major
conceptual change that Gentner seeks to understand.

As in all cases of conceptual change, one crucial ingredient is the
setting of a new explanatory agenda. On a grand scale, Kepler did so
by seeking a physical explanation for why the planets revolved around the
sun. This explanatory goal evolved through his long career, and the answer
he formulated required conceptual change. More locally, early in his work
on the mathematics of the motion of the planets, Kepler noted that the
speed of the planets was slower the farther they were from the sun. This
generalization holds both between planets and within the orbit of each. Of
any two planets, the one more distant from the sun moves slower around
the sun. And within each planet’s orbit, the speed of the planet is less the
farther from the sun it is. These generalizations are the consequence of
Kepler’s Second Law: a line from the sun to a planet sweeps out a constant
area in a given amount of time. In thinking about this, Kepler wondered
whether each planet’s anima motrix got weaker the farther from the sun it
was. This was not a very satisfactory explanation, for in some ways it just
restated the phenomenon and it was an unexplained fact—a coincidence.
The only other idea he could come up with (a bold abductive leap) was
that there was only one anima motrix, in the sun itself, and that the sun’s
anima motrix caused the motion of the planets. For this explanation to
work, it must be that the causal effects of the sun’s anima motrix became
weaker as the distance from the sun got greater. The explanation was more
satisfactory, although it violated the core of the concept of an anima
motrix, which explains the motion of the entity itself and not other
entities. To develop this explanation and transform the concept of anima
motrix, Kepler drew on a central analogy that he worked with for the rest
of his career. Gentner and her colleagues have provided an analysis of how
the analogy worked and what role it played in Kepler’s conceptual change.
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Kepler analogized the anima motrix emitted by the sun to light
emitted by the sun. Figure 11.1 is Kepler’s diagram, emphasizing that
(1) light is emitted by the sun, (2) light becomes less dense as the distance
from the source (the sun), (3) light illuminates planets upon reaching
them, and (4) the illumination is dimmer if the light is less concentrated.
By analogy to light, the anima motrix was hypothesized to become less
powerful as the distance from the sun increases, thus explaining why the
motion of a planet is slower the farther it is from the sun. This analogy did
considerable work for Kepler. Most important, it played a role in Kepler’s
major conceptual change: the transformation of the anima motrix
(motive soul) to the vis motrix (motive force) or virtu motrix (motive
power). In Kepler’s later writings he used the latter terms, conceptual-
izing the cause of the motion of the planets to be a physical entity emitted
by the sun, just like light. Gentner and her colleagues argue that the
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Figure 11.1. Kepler’s diagram of the propagation of light from the sun, illuminating
planets at different distances from the sun (redrawn from Gentner et al., 1997).
Gentner, D., Brem, S., Ferguson, R.W., Wolff, P., Markman, A. B., & Forbus, K. D.
(1997). Analogy and creativity in the works of Johannes Kepler. In T. B. Ward, S. M.
Smith, & J. Vaid (Eds.), Creative thought: An investigation of conceptual structures and
processes (pp. 403–459). Washington, DC: American Psychological Association.
Adapted with permission.
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depth of the analogy supports this conceptual change. That analogy
supports a new ontology is a powerful point; virtu or vis motrix is a new
kind of physical entity, a physical casual power that operates across space
and influences the motion of the planets. As I said above, it is the pre-
cursor of the concept of gravity.

How did the analogy support this conceptual change? First, the
analogy provided an existence proof that the effects of a central source
could weaken with distance. Second, it provided a way of thinking about
action at a distance. Kepler elaborated the analogy by pointing out that
light is invisible as it passes through space, having a visible effect only
upon reaching a surface to illuminate. So, by analogy, the causal power of
the vis/virtus motrix could have no detectable effects as it moves through
space—until, that is, it contacts a body that it causes to move. This aspect
of the analogy was further elaborated by the observation that, although
light travels instaneously through space, some of its effects (e.g., heating
and fading the surfaces it contacts) take time because these effects require
physical interactions with the bodies contacted. So too, the vis motrix
travels instantaneously through space, but causing the motion of a body
contacted involves an interaction with the body’s matter, and thus
unfolds over time. Third, light is conserved, merely becoming less dense
with greater distance. Likewise, Kepler surmised, the vis motrix. Fourth,
the analogy allowed Kepler to conclude that the vis motrix was not
identical to light because light was blocked by intervening bodies (in
eclipses), but motion was not so affected. And finally, the analogy pro-
vided a way of thinking about why the speed of a planet decreased
linearly with distance from the sun, whereas brightness decreased by the
square of the distance from a light source. Kepler’s explanation was that it
is a surface (two dimensions) that is illuminated by a source, but speed is
in only one dimension. Thus, illumination decreases by the square of
distance but speed decreases in proportion to distance.

I highly recommend the papers on Kepler’s use of analogy by
Gentner and her colleagues. They analyze the structure of the analogy
between light and the vis motrix analogy’s structure (e.g., what objects
and relations are mapped on to each other across the source and target
domains) and also provide an analysis of the role of this analogy, plus two
others Kepler also drew on, in Kepler’s conceptual change. As in all uses
of analogies, Kepler highlighted the common structure between the
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source and target domains, and he used what Gentner calls “allignable
differences” to illuminate the mechanisms involved (e.g., the 2-D/1-D
difference, or the differential effects of eclipses on illumination and caused
motion).

Compare Kepler’s analogy with the analogy central to the boot-
strapping account of the construction of the integers offered in chapter 8.
Of course, we see all of the differences we might expect between a self-
conscious, meta-conceptually aware, mathematically sophisticated genius
and your average 3-year-old. Kepler was aware of analogizing, explicitly
discussing the proper, productive use of analogies in theory building and
explicitly distinguishing his analogies from the undisciplined and unsys-
tematic analogies of contemporary alchemists. Nonetheless, as in other
cases of comparing conceptual change in childhood with that of historical
case studies, there are commonalities across the two. Kepler was engaged
in Quinian bootstrapping, and his bootstrapping process exemplifies all of
the key features of Quianian bootstrapping that I laid out in chapter 8.
Kepler’s initial abductive hypothesis—that something in the sun causes
planets to move—was a placeholder structure. The resources of language
allowed him to formulate that hypothesis, but the “something” was
completely unspecified. Kepler rejected his first partial interpretation for
this placeholder concept—anima motrix—in which the sun’s anima motrix
was hypothesized as capable of causing the motion of other bodies. This
idea did violence to the concept of anima motrix, the hypothesized
internal motive powers of the moving entities themselves. But at the
beginning of the process of conceptual change, Kepler had nothing to
replace the concept anima motrix with. Modeling processes—in this case
especially, the analogy with light emitted by the sun and that “some-
thing”—filled in the placeholder. The analogy with light (and also
magnetism) allowed Kepler to formulate a concept that was the direct
precursor to Newton’s concept of gravity—a physical force that deter-
mined the motion of the planets. These modeling activities drew upon
concepts that were fairly well understood, and Kepler carried out con-
siderable work on them in themselves. They were drawn from domains of
phenomena that were initially totally distinct from the motion of planets
—the domains of light propagation and of magnetic attraction. Kepler’s
modeling process combined the constraints from the phenomena being
modeled (including his three laws of planetary motion) with the causal
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structure from his source analogy. The result was a new conceptual
structure, with concepts interdefined in totally new ways, not expressible
in the language of Ptolemaic/Aristotelian physics.

Nersessian’s Cognitive-Historical Analysis: Example 3

Nersessian’s goals for cognitive-historical analysis are much broader than
accounting for conceptual novelty; she seeks to understand scientists’
training practices, how scientists construct arguments and communicate,
how they design and execute experiments (both real and thought), how
they invent and use mathematical and other modeling tools, and how
they invent scientific instruments. Here I am concerned with the lessons
she draws from cognitive-historical analysis for understanding the
mechanisms underlying conceptual change.

Nersessian originally formulated her cognitive-historical research
program in a case study of Maxwell. I do not understand the physics or
mathematics of this case well enough to give a feel for the conceptual
change Maxwell achieved, but according to Nersessian (1992), the work
of Faraday had already brought into question the Newtonian view that
electricity and magnetism were separate phenomena. Maxwell accepted
Faraday’s conjecture that electricity and magnetism were aspects of the
same phenomenon, and that electric and magnetic actions involve con-
tinuous transmission through space (Faraday) or the ether (Maxwell).
Maxwell sought a mathematical treatment of these actions; and to achieve
it, he had to invent a mathematics more powerful than the Newtonian
calculus of differential equations (partial differential equations and the
vector calculus). Maxwell had done work in the areas of fluids and
electricity, where since it was too difficult to represent the underlying
Newtonian forces in differential equations, scientists (including Maxwell
himself) working in the field then called “continuum mechanics” had
begun to invent the mathematics of partial differential equations.

Thus, Maxwell began with concepts of magnetic action and elec-
trical action, and with Newtonian mathematics, and ended with concepts
of electromagnetic fields with representations of forces that do not accord
with Newton’s three laws and a mathematics capable of expressing the
concepts of quantum mechanics and relativity. I urge the mathematically
sophisticated among you to read Nersessian’s papers.
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As in all cases of conceptual change, the incommensurability is local.
Many of the concepts of CS2—electricity, magnetic attraction, charge,
the speed of light, and so on—were known to Maxwell at the outset.
What Maxwell did was to create a unified mathematical representation of
the propagation of electric and magnetic forces with a time delay, and he
calculated the velocity of the propagation. He discovered the mathe-
matical form of the dependence of electric fields on magnetic ones
(Maxwell’s second equation), formulating the modern concept of elec-
tromagnetic field.

In this case study, Nersessian places analogical reasoning in a broader
context of cognitive modeling activities. She notes the prevalence of
analogies, visual representations, thought experiments, and limiting case
analyses in Maxwell’s work, and mentions also their prevalence in other
episodes of conceptual change. She shows how all of these modeling
activities are effective means of abstracting, examining, and revising the
constraints on existing representational systems, in light of the constraints
provided by a new target problem, and thus are effective means of
generating a new conceptual structure.

Maxwell’s work was initiated by a new explanatory agenda: to
provide a mathematical account for electromagnetic phenomena dis-
covered by Faraday. Any theory he constructed had to satisfy four
constraints: (1) electric and magnetic actions are at right angles to each
other, (2) the plane of polarized light is rotated by magnetic action,
(3) there is a tension along the lines of magnetic and electric action (this
was Faraday’s speculation, and Maxwell accepted it), and (4) there is a
lateral repulsion between lines of magnetic and electric action. Maxwell
noted that there was a mechanical analogy consistent with these con-
straints: mechanical properties of fluid vortex media under stress.
Maxwell was well versed in the new mathematical techniques relating to
continuum phenomena, and his abductive leap was that these may be
what are needed to model the phenomena Faraday discovered. Like
Kepler’s, Maxwell’s use of analogy was self-conscious, deliberate, and
central to his conceptual changes. He used what he called a “physical
analogy”: embodying the math in a physical form (e.g., specifying a fluid
vortex, not just the equations). These physical analogies had a visual
component or were often represented visually. In his words, these were
easier to think with than were the formalisms.
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By the end of this process, which extended over several years of solid
work and involved three iterations of model building and the analogical
mapping process, Maxwell had invented a mathematical representation
more powerful and more general than Newton’s. In Maxwell’s final
paper on the theory, he published the abstract schema that was the output
of this process—the equations of electromagnetic theory. By the end of
the process, he had created a schema that stood on its own as a basis for
representing and explaining electromagnetic phenomena. But, as Ner-
sessian points out, he would not have arrived at this point without the
modeling processes he deployed. Maxwell’s mathematical representation
of a field, a non-Newtonian dynamical system, laid the groundwork for
relativity theory and quantum mechanics. The bootstrapping process
entailed changes in the representations of both the target and source
domains.

Nersessian’s account of how Maxwell used analogy draws on the
cognitive literature on analogy, especially the slightly different analyses
of Dedre Gentner and Keith Holyoak (see Gentner, Holyoak,
Kokinov, 2001, for a recent review of cognitive science of analogy)
Nersessian goes beyond the analyses in these papers, however, in
addressing the use of analogy in conceptual change. As in all cases of
conceptual change, at the outset of the process there was no source
domain that had the full structure of electromagnetic theory or of the
mathematics to represent it. The modeling processes Maxwell engaged
in are central parts of Quinian bootstrapping. Nersessian shows how
satisfying the constraints from both source and target domain served as
an abstraction technique—the schema Maxwell ended with was the
structure common to both domains that survived the iterations of
mapping. She points out that other modeling processes, such as thought
experimentation and carrying out limiting case analyses, are similarly
abstraction and idealization devices. All of these techniques make use of
the human capacity for simulation, engaging mental models in which
some of the constraints are only implicitly or tacitly represented. Indeed,
this is one of the sources of the usefulness of the visual dimension of the
analogy that Maxwell used to represent the Newtonian forces in a fluid
vortex. The visual representation was easier to use in thought than were
the equations, and this is partly because constraints on computations
over visual models are often merely tacit.
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With these fruits of cognitive-historical analysis in hand, let us turn to
the question of how children create a representation of number that
transcends the positive integers, embracing rational number (NS2), and
how they create a representation of matter in which weight and density
are differentiated (PT2).

Bootstrapping a Representation of Rational Number
and a Representation of Matter: A Paradox

An understanding of fractions, decimals, ratios, and proportionality is
what divides scores on the SAT tests taken by college-bound seniors in
high school above or below the median. That is, half of college-bound
17- to 18-year-olds have not fully consolidated NS2. Not surprisingly,
then, figuring out curricular interventions that are effective in fostering
the NS1/NS2 transition is one of the most heavily researched topics in
math education. Educators working on this problem develop curricula
that facilitate Quinian bootstrapping. A full characterization of the
bootstrapping process involved is beyond the scope of this book, but I
will say something about what is known and point you to some won-
derful literature on the topic.

Not surprisingly, children do not initially understand the notational
conventions that give symbols such as .5 or ‰ their meaning. These
notations thus serve the role of the explicitly represented placeholder
symbols that are part of Quinian bootstrapping. Further, many authors
have suggested that the process through which the new concept of
rational number is created involves modeling numbers in terms of
representations of physical quantity. Computations defined over repre-
sentations of physical quantity include quantitative operations such as
splitting, sharing, folding, comparing, and perceiving proportionality.
These provide a qualitative appreciation of some aspects of the inferential
role of rational numbers and ratios, and mapping physical quantity and
these operations onto the placeholder symbols is part of the bootstrapping
process. In this context, representations of physical quantities are the
source domain, and mathematical representations are the target domain.
The mathematics educators Joan Moss and Robbie Case, and also,
independently, Jere Confrey, have implemented curricular interventions
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based on these ideas (Confrey, 1994; Moss & Case, 1999; see also Resnick
& Singer, 1993).

As we will see below, bootstrapping curricula embodying
the modeling techniques deployed by Maxwell have success in fostering
the PT1/PT2 transition within a theory of matter. These curricula
involve modeling weight in terms of number (NT2—number including
rationals, infinitely dense) and density in terms of ratios. In this context,
mathematical representations are the source domain and representations
of physical quantity are the target domain. Hence, the paradox: mapping
number to continuous quantities plays a role in coming to appreciate the
NS2 concept of rational number, but at the outset of this process, chil-
dren do not have a concept of continuous quantities. Mapping quantities
like weight and volume to NS2’s number plays a role in coming to
appreciate the PT2 concepts of weight, volume, and density, but at the
outset of this process, children do not have a concept of rational number.
Although this seems paradoxical, this is how bootstrapping works. It is an
iterative process, and often it involves co-construction of both source and
target domains.

Constructing a Representation of Rational Number: NS2

Moss and Case’s work can serve as an example of bootstrapping curricula
developed to foster NS2. They argued that by the time children are 9

or 10 years of age, they have a global representation of proportions and a
numerical structure that supports splitting and doubling. They further
argued that coordinating these is part of the bootstrapping process that
yields a representation of fractions and decimals. Their innovative 4th-
grade curriculum begins with percents, as a way of numerically repre-
senting the qualitative notions of full, nearly full, half full, and nearly
empty, as these apply to a beaker of water. Students are then led to
coordinate intuitive understanding of halving physical quantities with
learned numerical halving strategies. The curriculum subsequently moves
to two-place decimal notation, and finally to fraction notation. Rigorous
pretests and posttests have demonstrated that students using this curric-
ulum outperform students using standard curricula.

The mapping between number and physical quantity is likely to be
particularly important in children’s coming to appreciate the existence of
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rational numbers and that they are repeatedly divisible. Although young
children may deny that there is a number between 0 and 1, they can see
that a line of unit length exists between the origin and the first unit on a
number line. In Moss and Case’s curriculum, measurement activities
support the existence of quantities such as 1 ‰ inches and ‰ cup. Once
children see how, through measurement, natural number maps onto
quantities such as length or amount of matter, their representation of the
physical quantity as repeatedly divisible could—if the mapping were
maintained—support understanding number as repeatedly divisible.

Note that the learning process envisioned by such curricula is
Quinian bootstrapping. Placeholder structures (mathematical notation)
are initially uninterpreted. New expressive power derives from creating
mappings between initially separate conceptual domains—in this case,
representations of number and representations of continuous quantities.
Initially, the computations defined over each of these separate domains
are separate, and the curriculum supports mapping these to one another
(e.g., halving, finding averages). In addition, each initial representational
system makes explicit and salient different aspects of the resulting struc-
ture. When the final structure is built, the child has transformed his
representations of the initial domains as well as created something new
that is qualitatively different from either (see chapters 9 and 10 for
defenses of the claims that each of these NS1–NS2 and PT1–PT2 tran-
sitions involve qualitative changes).

Remember the paradox. These bootstrapping processes presuppose
that young children conceptualize some physical quantities as repeatedly
divisible, so that their representations of physical quantity can serve as a
base domain for modeling rational number. As we saw in chapter 10,
children do not initially consider matter continuous in this sense, nor do
they initially conceive of weight or different aspects of spatial extent (e.g.,
length, area, or volume) as continuous magnitudes. Studies that have
examined children’s reasoning about the infinite divisibility of material
objects, the amount of space they occupy, and their weight show that
young elementary- school age students can at best imagine only a limited
number of divisions before the matter disappears and the amount of
weight or occupied space goes to zero. Based on these findings as well as
many other findings concerning children’s concepts of weight, density,
and material kind, chapter 10 argued that coming to conceptualize
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matter, weight, and volume as continuous physical quantities involves
conceptual change, the construction of PT2.

In spite of this conundrum, I endorse Moss and Case’s insights into
how one might use representations of physical quantity as a source domain
in bootstrapping a representation of rational number. As mentioned
above, this is how analogy works when part of the bootstrapping processes
that support conceptual change in mathematics and science. As has long
been known, advances in mathematics and in physical theory proceed
hand in hand—as witnessed by Newton’s theory building in physics and
his developmental of the calculus needed to represent his theory or by
Maxwell’s development of both electromagnetic field theory and the
mathematics needed to represent it (partial differential equations).

Evidence for the Interdependence of PT2 and NS2

The studies described in chapter 9 of children’s representations of rational
number also included the tasks that diagnosed children’s concepts of
matter, weight, and space that were described in chapter 10. In a result of
theoretical and practical importance, students’ patterns of judgments on
the tasks that diagnose a representation of number as infinitely divisible,
and those that diagnose a representation of matter as infinitely divisible,
are found to be strongly related. All (100%) students who showed the
Never Get to Zero pattern described in chapter 9, judging that numbers
could be divided ad infinitum, also judged that matter would continue to
exist and take up space with repeated divisions. Similarly, 64% of the
children who demonstrated that they understood the continuity of
matter on this task also demonstrated that they understood that number is
infinitely divisible. Indeed, some students who had infinitely divisible
number and matter patterns explicitly justified their number answers by
analogy to the matter questions (which had come earlier in the inter-
view). For example:

$ “Same as Styrofoam, could keep going forever” (S45, Grade 6)
$ “There’s an endless amount of numbers between 1 and zero; like

Styrofoam, there’s always something there” (S46, Grade 6)
$ “It goes back to the matter thing. You could divide a molecule and

keep dividing . . . an infinite number” (S47, Grade 6)
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As can be seen by the above percentages, student judgment of the
infinite divisibility of matter and the space it occupies reliably preceded their
judgment of the infinite divisibility of number, as would be expected if
mapping number to continuous quantity is an important part of con-
structing a representation of rational number. Roughly one-fourth of the
children judged matter itself as infinitely divisible, concluding that it
would always occupy some space, but judged number not to be infinitely
divisible, whereas the reverse pattern never occurred. Thus, the intuition
that an understanding of the continuity of physical quantity could pos-
sibly play an important role in the bootstrapping NS2 receives support.

Finally, these data reveal that, though student judgment of the
infinite divisibility of matter itself and the space occupied by matter
reliably precedes that of number, their judgment of the infinite divisibility
of weight seems to occur at roughly the same time as that of number.
Only 2% of students (1 of 50) understood the infinite divisibility of
number and not that of weight, and only 4% (2 of 50) understood infinite
divisibility of weight while having no insight about infinite divisibility of
number (Get to Zero patterns). Further, those students with transitional
patterns on number were in between in their understanding of weight:
one half already understood the infinite divisibility of weight, while the
other half did not. These results have implications for what could be a
two-way process by which a conceptual change in one domain might
reciprocally aid in the change in another, just as in Newton’s or Max-
well’s joint mathematical and physical conceptual changes.

The high level of coherence between children’s thinking about the
infinite divisibility of weight, on the one hand, and the infinite divisibility
of number, on the other, is a form of mutual dependence that one would
expect if change involves a conceptual bootstrapping process rather than
simple knowledge accretion. At first glance, the mutual dependence may
seem inflated by the fact that similar thought experiments probed chil-
dren’s concepts of number, matter, volume, and weight. While that is so,
children’s responses to the thought experiments predict other indications
of their understanding of rational number (e.g., their abilities to order
fractions or explain notation; see chapter 9) and other indications of their
understanding of matter (e.g., their differentiation of weight from den-
sity, their sorting of entities as material versus nonmaterial, their appre-
ciation that solid entities are material throughout, and their
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understanding of weight and volume measurement—see chapter 10).
Thus, the thought experiments reflect conceptual changes in each case,
and the two conceptual changes are indeed mutually supportive.

Bootstrapping Processes and Science Education

The fact that a sizable proportion of American adults have failed to
construct either PT2 or NS2 is consistent with the claim that conceptual
change is required in each case (evidence from difficulty of learning). But
more to the present point, these facts reflect a major failure of math and
science education in this country. These topics are repeatedly taught in
the math and science curriculum (in the case of fractions and decimals,
every year from grade 3 through high school).

Over the past 25 years, cognitive scientists and science educators have
joined forces to document the failure of science and math education, to
understand why, and to develop curricula that do better. Science and
math education fail for many reasons, and some of them are of theoretical
importance to the argument of this book. Science and math education
require conceptual change. Very frequently, students bring a CS1 to the
classroom that is incommensurable with the CS2 the teacher is pre-
senting. For example, before encountering Newtonian mechanics in the
classroom, adolescents have created an intuitive theory that shares much
with the impetus theory of the Middle Ages; before encountering the-
ories of thermal phenomena in the classroom, adolescents have created an
intuitive theory that shares much with the Florentine Experimenters’
source-recipient theory (see chapter 10); and before encountering
Darwin’s theory of natural selection in the classroom, adolescents have
often constructed an intuitive theory of evolution that shares much
with pre-Darwinian theories in which environmental factors cause
adaptive changes within individual lineagesforces cause changes (e.g., for
mechanics, Clement, 1982; McCloskey, 1983; Viennot, 1979; for thermal
theories, Wiser, 1988; for evolution, Shtulman, 2006).

In each of these cases, qualitative problems have been devised that
diagnose the student’s initial theory. And what is universally found is that
after one or two years of science instruction in high school, and even in
college, many students’ initial theories remain intact. These students
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have totally failed to assimilate CS2. How it is possible to pass (or even
do well) in formal science courses without constructing the CS2 being
taught is an interesting question, beyond the scope of this chapter.
Basically, students memorize local factual information, equations, and
problem-solving strategies without integrating these into coherent
explanatory systems. When one sees science education as facing the
problem of conceptual change, this finding is not entirely shocking
(although the teachers shown these data from their own classrooms are
invariably shocked). Science education is more likely to succeed if the
curricula developers are aware of the systematic and deeply entrenched
CS1s students bring to the classroom, and if the curricula are designed
with what is known about the modeling and bootstrapping processes that
underlie conceptual change in mind. The Moss and Case curriculum on
fractions mentioned above is one example of the fruit of this work. Here,
I describe the work of Carol Smith and her colleagues (Smith, 2007;
Smith, Maclin, Grosslight, & Davis, 1997; Smith, Snir, & Grosslight,
1992; Snir, Smith, & Grosslight, 1993), exploring experimental curricula
that support student construction of PT2.

The American public first faced the crisis in American science edu-
cation in 1957, when the Soviet Union put a satellite, Sputnik, into orbit,
when we Americans did not yet have the capability of doing so. The U.
S./USSR space race was initiated in response to this blow to our intel-
lectual and technological ego. Congress mandated huge spending on
science education, and some of the finest scientists in the country turned
their attention to the problem. One of the products of this effort was
Integrated Physcial Science (IPS), a curriculum and textbook aimed at
middle school/early high school students, that begins by teaching PT2.
The first three sections of the IPS curriculum introduce measuring
techniques for mass and volume, present these quantities as the funda-
mental properties of material entities, and characterize density as M/V
and as a characteristic property that distinguishes material kinds. To
ensure that these concepts are connected to the real world, students are
engaged in hands-on activities, including inventing reliable measurement
techniques and exploring phenomena that require PT2 to be properly
represented and explained (e.g., exploring a variety of transformations
such as thermal expansion, dissolving, and chemical reactions, to discover
that mass is conserved even when volume is not, calculating the third
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variable of mass/density/volume when two are known). IPS is an elegant
and well-thought-out curriculum that emphasizes formal definitions,
precise measurement, and explicit quantitative calculations. However,
this is not enough. When the qualitative tasks described in chapter 10 that
diagnose children’s concepts of weight, mass, volume, density, and matter
are given as a pretest and posttest to these sections of IPS, one finds that
the students who benefit from IPS are those who have already con-
structed PT2 before the beginning of the curriculum, at least on a
qualitative level. Those in the grips of PT1 at the outset of the IPS
curriculum hold PT1 at the end of it as well (Smith et al., 1997). Con-
ceptual change is hard.

What went wrong? Two things. First, although the scientists and
science educators who developed the elegant curricula in the wake of
Sputnik understood the science deeply and recognized the importance of
engaging students in hands-on activities, they did not explicitly grasp the
problem of science education as one of conceptual change and therefore
did not engage in the research of characterizing the CS1s their students
brought to the classroom. In turn, they did not realize that, in addition to
being provided formal definitions and paradigms of problem-solving
activities involving these definitions, students need to engage in the
modeling activities and bootstrapping processes required to create
meaning for the terms in these formal definitions. I repeat myself: One
cannot simply tell students “Matter is that which has mass and occupies
space” and expect them to understand what is said. And without a
continuous and extensive concept of weight, measurement procedures
that presuppose that the weight of an entity is the sum of the weights of
arbitrarily small constituents make little sense.

Curricula that draw on the modeling activities that have been dis-
covered through cognitive-historical analysis are successful in inducing
conceptual change. This is important for two reasons. First, in the present
context, science education becomes a testing ground for theories of the
bootstrapping processes and modeling activities that underlie conceptual
change. Second, the research involved in creating and testing these
innovative curricula points the way to effective means of fostering a
scientifically literate public.
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Bootstrapping Physical Theory 2 in a Classroom Context

We seek a characterization of the bootstrapping processes that underlie
the transition from PT1 to PT2. A subset of the conceptual changes
between these two theories include: (1) the extensive variable weight is
differentiated from the intensive variable density, (2) weight comes to be
represented as a necessary property of all material entities, (3) material
entities are differentiated from nonmaterial physically real entities such
as energy, heat, and light, (4) air is differentiated from the vacuum, and (5)
solids, liquids, and gases are coalesced into the category of material
entities. Although these changes are interrelated (necessarily so, since the
concepts are interdefined), Smith and her colleagues have shown that one
effective wedge into the process is working on developing an extensive
concept of weight as a measure of amount of matter. Notice that this was
also the intuition of the developers of IPS. But in Smith’s hands, learning
to measure weight (or mass) is seen as part of a series of conceptual
changes resulting in the concept of weight as an extensive quantity. In
contrast, the IPS developers assumed the extensive concept of weight and
saw themselves as engaging children in understanding how scales measure
weight in grams.

Smith deploys conceptual modeling processes. Here I draw on
Smith’s (2007) most recent study of the bootstrapping process. Learning
to measure weight or volume requires creating a mapping between
number (including fractions) and a physical magnitude that is not yet
represented by the child. As in all episodes of conceptual change, a first
step is the recognition of a new explanatory agenda. The explanatory
goals of PT1 are to understand causal interactions among physical entities,
and to distinguish physical entities from abstract and mental entities that
do not causally interact with physical entities. The explanatory goals of all
junior high school curricula on matter, in contrast, include distinguishing
material from immaterial entities and constructing concepts of weight,
mass and, volume as extensive properties of matter, differentiating these
quantities from the intensive variable, density. Engaging students in the
task of explaining the linear relation between weight and volume (given
constant material), suggesting the possibility of different-size objects
weighing the same (given contrasting material), explaining sinking and
floating, explicitly distinguishing material from immaterial physically real
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entities, and so on motivates them in the curriculum. Of course, stu-
dents with PT1 cannot consistently represent these phenomena, let
alone explain them. Smith begins her curricular interventions with
clinical interviews and written tests that diagnose students’ physical
theories, drawing on some of the qualitative measures described in
chapter 10 (sorting entities into material and immaterial ones, the clay-
ball task, weight and density ordering, the cutting Styrofoam task,
measurement activities, drawing models of weight, density, and
volume, and so on). In junior high school, many students have PT1,
some are transitional, and a few have constructed a qualitative appre-
ciation of PT2 even before instruction. These clinical interviews are
very engaging to students, who recognize that there are inconsistencies
among their concepts, and thus the pretest measures are a motivating
factor in the curriculum.

The first part of the curriculum has five parts and extends over several
weeks. First, students as a group sort entities into material and immaterial
entities, arguing over unclear cases and attempting to formulate universal
generalizations concerning necessary and sufficient conditions for being
material. No consensus is reached. Second, as in IPS, techniques for the
measurement of weight (or mass) and volume are introduced. One
technique for measuring mass involves adding 1 gram weights to one side
of a balance scale until the total weight is determined, and discovering
some of the additive properties of weight and volume (e.g., the total
weight of two objects is the sum of each of their weights, according to
these measurement techniques). Comparable activities support mea-
surement procedures and discoveries about the additive properties of
volume. These activities also include deriving the mass and volume of
small amounts of matter by division. Notice that these correspond to the
central activity in the Moss and Case (1999) rational number curriculum.
The children in Smith’s studies are three to five years older than those in
Moss and Case’s, but not all have already created the relevant concepts of
fractions. Thus, the bootstrapping is necessarily two-way.

These activities underlie the mapping of weight to number, begin-
ning to draw out the extensive concept of weight from the undiffer-
entiated weight/density concept of PT1. The curriculum then extends to
cases where the derived measures exceed the limits of the measuring
device (e.g., determining the approximate weight of a single lentil, given
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the weight of 50 lentils). These activities are supported by thought
experiments. Children in the grips of PT1 maintain that a single lentil
weighs nothing at all—0 grams—and they are challenged to explain how,
then, 50 lentils can weigh something. This part of the curriculum cul-
minates in a trip to a laboratory with an analytical balance, at which a
fingerprint and a signature are weighed, further consolidating the dif-
ferentiation of weight or mass from felt weight and providing a resolution
of the lentil thought experiment in terms of the sensitivity of measure-
ment devices. The final activities involve measuring the amount of space
taken up by air in the lungs (lung capacity) and the weight of air in a
balloon (comparing the weights of a full and empty balloon).

Posttests established that two-thirds of the students who go through
this curriculum improve; all children who had begun to construct the
relevant part of PT2 (weight conceptualized a continuous, extensive,
property of all material entities) consolidated this theory, as did some who
began firmly in PT1. Others who began with PT1 made progress,
becoming transitional. Not all children progressed (one-third did not);
conceptual change is hard. Smith showed that the prerequisites for
progression were (1) some understanding of matter as continuous
(though not necessarily as involves weight) and (2) some minimal
understanding of number as infinitely divisible.

With these aspects of PT2 in hand, Smith and her colleagues have
shown that an analogical mapping process structurally identical to that
employed by Maxwell facilitates further conceptual change (e.g., Smith,
Snir, & Grosslight, 1992; Smith & Unger, 1997). Smith and her collea-
gues employed visual analogies that embody the mathematics of inten-
sive/extensive quantities as a source domain to facilitate middle-school
children’s differentiation of weight and density. The two extensive
quantities in the source domain were number of dots and number of
boxes, and the intensive quantity was density—number of dots per box.
The curriculum includes meta-conceptual lessons about the nature of
models and also lessons involving mapping dots per box models to
extensive and intensive quantities already better understood (e.g.,
sweetness, where number of boxes represent volume of water, number of
dots represent amount of sugar, and dots per box represents sweetness).

Remember the problem we are facing. In cases of conceptual
change, at the beginning a person does not yet have the concepts in the
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target domain that will map onto the relevant concepts of the source
domain. When children begin, they have an undifferentiated concept
weight/density. If children have not yet differentiated weight from density
(heavy from heavy kind of stuff), then how are they to map weight onto
total number of dots and density of material onto number of dots per
box? This is a deep problem and explains why the process takes so long—
years when scientists are constructing mappings for the first time, and
months in the science-education cases, where children are being guided
by curricula designed by people who already understand the target theory
and the mapping between it and the source domain.

Students are first introduced to the source domain—dots per box,
number of boxes, number of dots. They see that they can predict the
third variable from any two. For example, they can predict how many
dots a figure will contain, given how many boxes and how many dots per
box. They use the model to explain why there is a linear relation
between number of boxes and number of dots, given a common density.
After they have explored the source model, discussed the nature of
models and modeled sweetness, they explore several phenomena in the
domain of matter. These might include the linear relation between
weight and volume given a constant material, the fact that two objects
that are the same size might weigh different amounts, and the phe-
nomena of sinking and floating. They then begin to map the target
domain of matter onto the source domain. They are guided to map
weight (or mass) onto number of dots, volume onto number of boxes.
This is where the first part of the curriculum, described above, is essential,
for it provides some wedge into extensive concepts of weight and
volume. The dots/box modeling activities reinforce and consolidate the
relevant extensive concepts. Furthermore, density is visible in the model
in the form of dots per box. What remains is for students to see that there
is a physical magnitude that does explanatory work that corresponds to
dots per box. They can use the mapping to explain why two objects that
are the same size might weigh different amounts, why the relation
between weight and volume is linear given a single density, what the
relevant variables are to explain sinking and floating, and so on. These
modeling activities support the differentiation of weight from density,
with weight providing a measure of amount of matter and density being a
characteristic property of material kinds.
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There are three crucial ingredients to such curricula. First, the child
must master phenomena in the target domain for which an explanation
depends on the differentiated concepts. Remember, incommensurability
is only local, so some of these phenomena are represented by the same
concepts across PT1 and PT2 and some are not. Second, they must see
the analogy between these phenomena and the corresponding phe-
nomena in the source domain. Finally, the visual analogy provides an
anchor for the distinct roles each differentiated concept plays in under-
standing these phenomena.

In these pages I cannot begin to do justice to Smith’s subtle and
important work. In some versions of the curriculum, the lessons end with
a challenge that requires changing the models deployed so far: thermal
expansion. Up to this point, density has been modeled as a constant and
characteristic property of material kind. Upon being introduced to the
phenomenon of thermal expansion, students are engaged with modifying
the models (there are many different ways this could be done), and also
engaged in further reflection on the process of creating models in the
service of theory building. These activities then support the differentia-
tion of weight from density and the mathematics of intensive and
extensive physical quantities.

This process is not magic. Not all children going through this process
succeed in making the mapping. The first part of the curriculum provides
a beginning inkling of the extensive concept of weight as a measure of
amount of matter, and if children map this onto the extensive concept of
number of dots, they are already part way there in distinguishing it from
density. They must then grasp that there is a distinct physical variable in
the domain of matter that corresponds to the variable dots per box, and
the curriculum provides activities that support this insight. Smith and her
colleagues have demonstrated that this curriculum outperforms curricula
that do not deploy conceptual modeling techniques (including IPS, in
Smith et al., 1997) in facilitating the construction of PT2, providing
evidence for the role of bootstrapping processes in conceptual change.

Other important work in science education similarly draws on and
informs the lessons concerning theory change that have emerged from
cognitive-historical analysis. For example, Marianne Wiser (1988; 1995;
Wiser & Amin, 2002) developed visual models similar to those used by
Smith—models that embody the mathematics of intensive/extensive
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quantities and engaged high school students in using them to model
thermal phenomena. She showed that this curriculum is more effective
than others that do not engage Quinian bootstrapping in facilitating the
differentiation of heat from temperature. She also explored the relations
between these qualitative models and more realistic molecular models,
and showed that children maintain PT2 (in this case of thermal phe-
nomena) six months after the end of the curriculum, but forget the
models. They truly are bootstrapping devices.

Quinian bootstrapping is central to these curricula. Formula such as
D ¼ M/V or D ¼ W/V are placeholder structures, as are verbal state-
ments such as “This steel ball weighs the same as this larger aluminum
one,” or “All matter has mass.” Until the child has distinguished weight
(or mass) from density, and material entities from physically real ones,
these statements and formula can be at best only partly interpreted in
terms of concepts already represented. Cognitive modeling processes
create meaning for these placeholder structure—students model physical
phenomena, creating analogical mappings between mathematical
representations (and visual models of those mathematical representations)
and the physical world, and engage in thought experiments and limiting
case analyses. The meanings are constructed from the relations among
concepts directly represented in the placeholder structures and from the
computational and referential roles of the representations deployed in the
modeling activities.

One purpose of Smith’s and Wiser’s work in science education is to
explore the role of Quinian bootstrapping in conceptual change. The
curricula succeed for several reasons, in addition to the modeling activ-
ities embedded within them. Students are explicitly engaged in con-
ceptual change. That is, there is a meta-conceptual component to these
curricula. Students are encouraged to become aware of their initial
theories, to create explicit models of them, and to discover that other
students have different models of the same phenomena. Lessons are built
that encourage students to reflect on the role of models in scientific
understanding, and students collaborate on building better models.
Creating scientific understanding is a social process, and is about
understanding the world in terms of consistent models that express
universal generalizations. Curricula that create classrooms that engage
students in these goals succeed in inducing lasting conceptual change.
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They are an existence proof that the failure of science education is not
inevitable (see Donovan, Bransford, & Pellegrino, 2000, for an excellent
overview of the lessons from the cognitive science of conceptual change
for science education). More important to my present purpose, the
success of curricula built around Quinian bootstrapping processes pro-
vides evidence for the role of these processes in conceptual change.

Conclusion

Those who believe that there are important discontuities in knowledge
structures over the course of conceptual development must characterize
them. In what ways are later conceptual systems discontinuous with their
ancestors? Chapters 8 through 11 provided two different answers to this
question: Sometimes conceptual development results in representational
systems with greater expressive power than their antecedents, and
sometimes successive conceptual systems are locally incommensurable.
Chapter 11, like chapter 8, took on the challenge of accounting for
developmental discontuities of each type. Quinian bootstrapping
underlies all of the conceptual discontinuities discussed in chapters 8

through 11, both in the course of historical changes and in the course of
science and math education.
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12
Conclusion I: The Origins of Concepts

I end with two concluding chapters. The first (chapter 12) summarizes
the main points from the preceding 11 chapters. This chapter, along with
the introduction (chapter 1), provides an overview of the argument and a
roadmap through it. The second concluding chapter (chapter 13) steps back
and considers the implications of the picture of conceptual develop-
ment offered in these pages for a theory of concepts. Chapter 13 introduces
new material, placing work on the origin of concepts in the context of
selected controversies from cognitive science and philosophy concerning
the very nature of concepts.

The Story so Far

Human beings, and only human beings, create deep, explicit, conceptual
understanding. No animal but us can ponder the causes and cures for
pancreatic cancer or global warming. Providing an account of where the
concepts that articulate human understanding come from—concepts
such as cause, cancer, and global—poses a formidable challenge. I believe
that cognitive science, the disciples of psychology, philosophy, linguistics,
and computer science, can meet this challenge; and my goal has been to
illustrate the progress that has been made, illuminating the developmental
history of many specific concepts—object, agent, cause, positive integer,
fraction, matter, weight, and density being the most fully considered.

A full account of the origin of human concepts must appeal to three
different time scales and three different types of processes. Over millions
of years, evolutionary processes create innate representational capacities.
Over hundreds of years, learning processes in a cultural-historical context
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create new representational resources that, in turn, are expressed and
maintained in language and in the cultural products they make possible.
And then, over years, each child must transcend the innately given
representational capacities by mastering the culturally constructed ones.

I have said nothing about the evolutionary processes that create
innate representational capacities; rather, I have appealed to data from
infants and nonhuman animals for evidence concerning what some of
these innate capacities are. Also, I have said little about the cultural
construction of concepts, alluding only to the nature of theory change in
historical time and to some of the bootstrapping mechanisms involved.
My focus has been the third time scale—individual ontogenesis.

To explain the origin of concepts over ontogenetic time, one must
specify the initial state, describe the changes that occur in development,
and characterize the learning mechanisms that underlie change. The latter
task is especially pressing if these changes involve the construction of
concepts previously unrepresented (and even unrepresentable). With
respect to characterizing the initial state, I argued that the innate stock of
primitives is not limited to sensory, perceptual, or sensori-motor primi-
tives. Rather, innate primitives include the representations that articulate
core cognition, as well as central systems of representation that include
concepts such as cause and that support language learning. With respect to
developmental change, I argued that conceptual development includes
episodes of qualitative change, resulting in systems of representation that
are more powerful than, and sometimes incommensurable with, those of
core cognition. And with respect to the origin of new representational
capacities, I sketched and provided evidence for Quinian bootstrapping
processes.

Core Cognition

Historical empiricists, such as Locke and Hume, and historical rationalists,
such as Descartes, would all find comfort in what 21st-century cognitive
science has to tell us about concept acquisition. As the rationalists insisted,
there are innate input analyzers that compute perceptual representations
—veridical representations of the distal world. Contrary to empiricist
theories, these input analyzers are devices that do not have to be
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constructed by learning processes that operate over sensory representa-
tions. The example I alluded to in chapter 2 was depth perception.

Still, as the empiricists believed, an informational semantics (see
chapter 13) seems appropriate for both sensory and perceptual repre-
sentations. The input analyzers that create representations of color, of
depth, and so on evolved to work as they do, and evolution is a process
that is responsive to veridicality. That is, we have evolution to thank for
guaranteeing that our representations of depth have the content they do
and can fulfill the computational role required of them. Also, as the
empiricists believed, garden-variety learning processes create previously
unrepresented concepts from this initial stock of representational
resources. What the empiricists did not envision were learning processes
that create new primitives. But that is a long story, the story of this book.

Explaining the human capacity for deep conceptual understanding
begins with the observation that evolution provides conceptual primi-
tives much richer than the empiricists thought. The first half of this book
characterized core cognition, for core cognition comprises most of
infants’ first conceptual representations. The domains of core cognition
that are well supported empirically are: (1) the world of middle-size,
middle-distant objects, including their paths of motion, spatial relations,
and physical interactions (including contact causality; chapters 2, 3, and
6); (2) the world of agents, including their goals, communicative inter-
actions, attentional states, and causal potential (chapters 5 and 6); and
(3) the world of numbers, including parallel individuation, analog mag-
nitude representations of the approximate cardinal values of sets, and set-
based quantification (chapters 4 and 7).

Representations in core cognition differ from perceptual repre-
sentations in their abstractness and their conceptual content. Two logi-
cally independent and empirically distinct properties of core cognition
representations lead me to attribute them conceptual content. First, they
cannot be reduced to spatio-temporal or sensory vocabulary. One cannot
capture concepts such as goal, object, approximately 10, or cause in terms of
primitives such as locations, paths of motion, shapes, and colors. Second,
they have a rich, central, conceptual role. In this latter respect, the dis-
tinction between the representations of core cognition and those of
perception is only a matter of degree. The output of perceptual processes
such as representations of distance, color, and shape are centrally
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accessible, represented in working-memory models, and support action
such as reaching. To successfully reach for an object, one must represent
where it is, and to anticipate how one should grasp it, one must represent
its shape. By 7 months of age, infants’ reaches are guided by such
representations. Thus, perceptual representations have some central
computational role to play in explaining infant behavior. The repre-
sentations in core cognition are similarly centrally accessible, represented
in working-memory models, and support action such as reaching—for
example, infants make a working-memory model of the individual
crackers in each of two buckets and guide their choice of which bucket to
crawl to from quantitative computations over those models. However,
chapters 3 through 6 documented the very much richer conceptual role
for the outputs of core cognition input analyzers. Indeed, a variety of
quantitative computations are defined over working-model representa-
tions of sets of objects—infants can sum continuous quantities or com-
pare models on the basis of 1–1 correspondence, and slightly older infants
categorically distinguish singletons from sets of multiple individuals.
Infants represent objects relative to the goals of agents, and infants’
representations of physical causality are constrained by their conceptu-
alization of the participants in a given interaction (as agents capable of
self-generated motion or as inert objects). Thus, the conceptual status of
the output of a given core cognition system is confirmed by its con-
ceptual interrelations with the output of other core cognition systems.

In all other respects, the representations in core cognition resemble
perceptual representations. Like representations of depth, the repre-
sentations of objects, agents, and number are the output of evolutionarily
ancient, innate, modular input analyzers. Like the perceptual processes
that compute depth, those that create representations of objects, agents,
and number continue to function continuously throughout the life span.
And like representations of depth, their format is most likely iconic.

It is an empirical claim that there are systems of representation with
these properties. While I believe all of the core cognition systems I
discussed in chapters 3 through 5 have all of them, I emphasized the
evidence for different properties in each example, and the current state of
evidence is stronger with respect to some of the properties than to others.
Let’s look at each distinctive property in turn.
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Dedicated Input Analyzers

A dedicated input analyzer computes representations of one kind of
entity in the world and only that kind. All perceptual input analyzers
are dedicated in this sense: the mechanism that computes depth from
stereopsis does not compute color, pitch, or number. Similarly, the
mechanism that computes north from the night sky, guiding indigo
buntings’ celestial navigation, plays no role in representing anything else
of importance to indigo bunting life. It is a strong empirical claim about
systems of core cognition that the entities in their domains are supported
by innate dedicated input analyzers. Here, I separate the question of
whether there are dedicated domain-specific input analyzers from the
question about innateness, leaving innateness to the next section.

The nature of the mechanisms that identify the entities in systems of
core cognition is a topic of ongoing research, and I touched on this
research in each case study. With respect to core object cognition, much
more is known about the adult perceptual input analyzers than those for
infants, for object perception has been a topic of study since the time of the
Gestalt psychologists. Still, as reviewed in chapters 2 and 3, we know that
for both infants and adults, spatio-temporal evidence is privileged. This is
one of the signatures that identifies infant object representations with those
of mid-level object-based attention and working memory in adults
(supporting continuity; see below). The spatio-temporal information that
yields representations of objects includes being bounded in 3-D space, and
the cost of noncohesion in tracking and forming memory representations
of entities both for infants and for adults when attentional load is high is
another signature that identifies these two systems as one and the same.
These results (reviewed in chapter 3) also provide evidence for the claim
that the input mechanisms are dedicated; perceptually very similar displays
(pile-shaped objects, crackers) engage tracking mechanisms if cohesive,
and fail to do so (piles of blocks, piles of sand, broken crackers) if shown to
have a history of noncohesion. The visual perceptual devices that analyze
input for 3-D boundaries and for spatio-temporal continuity create
representations of just one class of entities—objects—just as those visual
perceptual devices that analyze the input to the two eyes for disparity
create representations of just one property in the world—depth. The input
analyzers are dedicated to forming object representations.
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Chapter 4 discussed in some detail what is known about the input
analyzers that are dedicated to taking attended sets of individuals as input
and outputting analog magnitude representations of number. I contrasted
two possible types of such input analyzers—serial, iterative ones like
the accumulator model of Meck and Church (1983), and parallel ones
like that of Dehaene and Changeux (1993) and that of Church and
Broadbent (1990). Each of these classes of devices is dedicated to number
representations. The evidence favored the parallel models, for neither
infants nor adults take longer to form analog magnitude representations
of large rather than small sets. Chapter 4 provided further evidence for
this position, as analog magnitude representations are formed, both by
adults and infants, under conditions in which the individuals cannot be
separately attended or tracked. Besides illustrating the research program
that seeks to characterize the nature of the input mechanisms that
compute the symbols that articulate core cognition, this discussion
illustrated the importance of doing so in the quest for explaining the
origin of concepts. The parallel systems do not implement counting
algorithms, and therefore evidence that they underlie analog magnitude
number representations makes it all the more unlikely that these in turn
underlie explicit verbal counting (see chapter 8).

Chapter 5 raised different problems concerning the input analyzers
that create representations of agents, agents’ attentional states, and agents’
goals. Evidence was presented that suggested that infants use spatio-
temporal descriptions of the motions and interactions among objects to
do so, but that the static appearance of the entities in an event (e.g.,
presence of eyes and hands) also plays a role in creating representations of
agency. Chapter 5 left open whether one of these sources of information
is primary. For example, infants may initially identify agents through
patterns of interaction, and they may then learn what these agents look
like. Alternatively, the innate face detectors infants have may serve the
purpose of identifying agents, allowing them then to learn how agents
typically interact. A third possibility is, like mother recognition in chicks,
agency detection is such an important problem for human infants that
evolution built in two dedicated input analyzers to do the trick.

Thus, just as for perceptual representations (color, depth, shape),
specialized input analyzers identify the entities in the world that are in
each domain of core cognition. Characterizing the nature of these input
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analyzers is an important part of the program of characterizing core
cognition.

Innateness

Representations are mental symbols—states of the nervous system that
refer to entities in the world. Although it is possible that infants think
about things in the world before they’ve had any experience with them,
this is not required for the representations to be innate in the sense I mean
it. “Innate” simply means unlearned—not the output of an associative
process, a hypothesis-testing mechanism, or a bootstrapping process—
that is, not the output of any process that treats information derived from
the world as evidence. What I mean for a representation to be innate is
for the input analyzers that identify the represented entities to be the
product of evolution, not the product of learning, and for at least some of
its computational role to also be the product of evolution.

For the most part, the evidence reviewed in these pages for core
cognition did not derive from experiments with neonates. There is good
evidence for object representations by 2 months of age, for representa-
tions of causality by 6 months of age, for core cognition of intentional
agency by 5months of age, and for set-based quantification by 15months
of age. But 2 or 5 or 6 or 15 months is a lot of time for learning. Why
believe that the representations tapped in these experiments are the
output of innate input analyzers, and why believe that the demonstrated
inferential role that provides evidence for the content of the repre-
sentations is unlearned? I discussed this question in each case study,
appealing to four types of arguments.

First, success at some tasks can be good evidence for some target
representational capacity, whereas failure is not necessarily good evidence
that the target capacity is lacking. This is because some other rep-
resentational capacity, independent of the target one, may be needed for
the tasks and may not yet be available (not yet learned or not yet matured).
This obvious point does not buy us much—one can always say that some
unspecified performance limitation is masking some competence an infant
has. This move is of absolutely no interest without a specific proposal for
what that performance limitation would be and without evidence that it is
indeed playing a role in the failure. I gave several worked-out examples of
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successful appeals to performance limitations masking putatively innate
competences. For instance, remember the explanation for why it is not
until 2 months of age that infants create representations of a complete rod
partially hidden behind a barrier when they are shown the protruding
ends undergoing common motion. Specifying a single individual from
patterns of common motion of parts is supposed to be part of core cog-
nition and thus innate, but there is evidence that neonates fail to represent
such arrays in terms of a single rod (chapters 2 and 3). One possible
explanation for this failure is that below 2 months of age, infants cannot
notice the common motion across the barrier, so they lack the critical
input to the computation. Three types of evidence suggested that this may
be the correct account. If the barrier is made thinner, younger infants
succeed. Also, at the critical age, studies of eye movements show that
infants who actually look at both ends of the rod succeed, whereas those
who look at only one end of the rod fail, having focused on its motion
relative to one boundary of the barrier. Finally, neonates succeed if the
input is stroboscopic, thus preventing the infant’s attention from being
drawn to the misleading juncture between one portion of the rod and one
edge of the barrier. Thus, it is possible to bring evidence to bear on the
general hypothesis that performance limitations sometimes mask puta-
tively innate representational competences.

A second type of evidence that a given representational capacity may
be innate in humans, in spite of not being observed until some months
after birth, is data that show that it is manifest in neonates of other species.
Examples offered were depth perception, which emerges without
opportunities for learning in neonate goats and neonate rats, and object
representations, which are observed in neonate chicks. This line of evi-
dence is obviously indirect, providing only an existence proof that
evolution can build input analyzers that create representations with the
content in question.

A third type of evidence I offered for the innateness of the input
analyzers and computational machinery that constitutes core cognition
was also indirect: the simultaneous emergence of different aspects of a
whole system. As soon as infants can be shown to form representations of
complete objects, only parts of which had been visible behind barriers,
they also can be shown to use evidence of spatio-temporal discontinuity
to infer that two numerically distinct objects are involved in an event, and
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also to represent object motion as constrained by solidity (chapters 2 and
3). Similarly, different aspects of intentional attribution emerge toge-
ther; representing an entity as capable of attention increases the likeli-
hood of representing its action as goal-directed, and vice versa (chapter
5). And so, too, are causal representations integrated as soon as they are
evident at all (chapter 6). This developmental pattern provides indirect
evidence that the relevant representational systems might be innate.
The argument is simple: if the generalizations that underlie infants’
behavior are learned from statistical analyses of the input (represented in
terms of spatio-temporal and perceptual primitives), it is a mystery why
all of the interrelated constraints implicated in the core cognition
proposals emerge at once. Infants have vastly different amounts of input
relevant to statistical generalizations over perceptual primitives. Rela-
tive to the thousands of times they have seen objects disappear behind
barriers, 2-month-old infants have probably never seen rods placed into
cylinders, and rarely have they seen solid objects placed into containers.
Yet the interpretation of both types of events in terms of the constraints
on object motion that are part of core cognition emerge together, at 2
months of age. Statistical learning would be expected to be piecemeal,
not integrated.

Finally, I appealed to learnability considerations in arguing that the
representations in core cognition are the output of innate input analyzers.
If the capacity to represent individuated objects, numbers, agents, and
causality is learned, that is, built out of perceptual and spatio-temporal
primitives, then there must be some learning mechanism capable of
creating representations with conceptual content that transcend the
perceptual vocabulary. In the second half of the book, I offered Quinian
bootstrapping as a mechanism that could, in principle, do the trick, but
this type of learning process requires explicit external symbols (words,
mathematical symbols), and these are not available to young babies.
Associative learning mechanisms could certainly underlie the learning of
regularities in the input, such as: if a bounded stimulus disappeared
through deletion of the forward boundary behind another bounded
stimulus, there is a high probability that a bounded stimulus resembling
the one that disappeared will appear by accretion of the rear boundary
from the other side of the constantly visible bounded surface. But such
generalizations would not be formulated in terms of the concept object.
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There is no proposal I know for a learning mechanism available to
nonlinguistic creatures that can create representations of objects, number,
agency, or causality from perceptual primitives.

Long Evolutionary History

Some of the first work on analog magnitude representations of number
was carried out on rats and pigeons, using operant conditioning methods.
Until recently, the methods used to explore the mental representations of
animals and those of human infants have been very different. One cannot
keep a baby at 80% body weight, highly motivated to work for food.
Nor, obviously, would one want to. One cannot and would not want to
carry out experiments that require days or even months of training, and
thousands of test trials. Obviously, the animal methods permit much
more detailed examination of the stimulus parameters that are guiding
responses. Nonetheless, these methods provide evidence for some of the
same systems of representation as make up core cognition in infants (see
chapter 4 for data in support of analog magnitude number representations
from both traditional animal training methods and methods that diagnose
spontaneous representations).

Research with babies relies on spontaneous representations, diag-
nosing what draws their attention and what representations guide their
actions. As reviewed in chapters 2 through 7, the same methods we use
with babies—simple habituation methods, violation-of-expectancy
looking-time studies, simple choice studies—also yield reliable data with
nonhuman primates. These methods confirm that nonhuman primates as
diverse as cottontop tamarins and Rhesus macaques spontaneously rep-
resent their world in terms of some of the same core cognition systems as
underlie human infants’ representations of their world. With respect to
analog magnitude number representations, cottontop tamarins become
habituated to a series of sequences of a constant number of tones that vary
in all other parameters (total length of sequence, density of tones, total
sound energy, and so on) just as babies do, dishabituating when a new
number of tones is played. As for babies, discriminability is a function of
ratio, implicating analog magnitude representations of number (chapter
4). With respect to parallel individuation, object representations with the
same signatures as those that articulate human mid-level object-based
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attention and working memory, including the limits on parallel indi-
viduation, have been demonstrated in cottontop tamarins and Rhesus,
using both violation-of-expectancy looking-time methods and the two-
bucket set-choice method (chapter 4). These methods also provide
evidence for nonnumerical set-based quantification in both Rhesus
macaques and pre-verbal babies (specifically the singular/plural distinc-
tion; see chapter 7).

The evolutionary history of agent representations is more contro-
versial. Recent work indicates that nonhuman primates including
chimpanzees and Rhesus macaques do represent agents in terms of goals,
attentional states, and even informational states like ignorance (he doesn’t
know the grape is there; see chapter 5). There is some evidence that
primate representations of mental states may be encapsulated in more
specialized computational systems (e.g., in the service of competition for
food or mates) than are the general-purpose human representations of
agents. Many scientists are at work trying to understand the limits of
nonhuman primates’ representations of agents relative to those of human
infants. Are humans the only primates that cooperate widely, and thus
monitor whether they are sharing attention to some external state of
affairs, and thus seek to communicate, as Tomasello (Tomasello et al.,
2005) now holds? Are humans the only primates that teach, and thus the
only ones whose infants learn by imitation of cued demonstrations, as and
Csibra and Gergely (2006) suggest? Perhaps. Nonetheless, the capacity for
understanding agents in terms of intentional states preceded human
evolution by a very long time (see chapter 5).

Clearly, addressing the evolutionary history of systems of conceptual
representations is a central part of understanding the origin of concepts.
To the extent that systems of representation are shared with nonhuman
primates, it is unlikely that they were culturally constructed by human
beings, drawing on human-specific symbolic capacities.

Iconic Format

A full characterization of any mental representation must specify its
format as well as its conceptual role. W hat are the mental symbols like?
How are they instantiated in the brain? For most mental representations,
we know little about representational format. Of the core cognition
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systems discussed in these pages, the question of format is clearest for
number representations, so my discussion of format was concentrated
there (chapter 4).

I intend the distinction between iconic and noniconic formats to
be the same distinction that was at stake in the historical debates on the
format of representation underlying mental imagery Whether there are
“imagistic” mental representations was hotly debated in the 1970s and
1980s. See Block (1981) for an overview of the early debate; see Kosslyn,
Thompson, & Galin (2006) and Pylyshyn (2002, 2003) for their latest
salvos. I take this debate to be settled in favor of the existence of both
iconic and noniconic mental symbols. Iconic representations are analog;
roughly, the parts of the representation correspond to the parts of
the entities represented. A picture of a tiger is an iconic representation;
the word “tiger” is not. The head in the picture represents the head of the
tiger; the tail in the picture represents the tail. The “t” in “tiger” does not
represent any part of the tiger.

The very name “analog magnitude representation” stakes a claim for
its format. Analog representations of number represent as would a number
line—the representation of two ( ———— ) is a quantity that is smaller
than and is contained in the representation for three ( ————— ). We
do not know how these analog representations are actually instantiated in
the brain—larger quantities could be represented by more neurons firing
or by faster firing of a fixed population of neurons, for example. Many
plausible models have been proposed (see chapter 4). However analog
magnitude representations are instantiated in the brain, their psycho-
physical signatures strongly suggest this type of representational scheme. If
nonlinguistic number representations were noniconic, as “7” and “8” are,
there is no reason that it would take longer to judge that 7 is less than 8

than to judge that 5 is less than 6. That discrimination satisfies Weber’s law
(is a function of the ratio of set sizes) suggests that number representations
work like length discrimination, time discrimination, brightness discrim-
ination, loudness discrimination, and so on. All proposals for how these
continuous dimensions are represented also deploy analog magnitudes.

I have claimed that all of core cognition is likely to be represented in
iconic format. Although I believe this to be so, I admit this is a specu-
lation. Consider the working-memory models that constitute the parallel
individuation system of object representations. The fact that these
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representations are subject to the set-size limit of parallel individuation
implicates a representational schema in which each individual in the
world is represented by a symbol in working memory. This fact does not
constrain the format of these symbols. A working-memory model for
two boxes of different front surface areas, for instance, could be consist of
imagelike representations of the objects (&&), or they could be abstract
symbols whose parts do not correspond to parts of the objects [object
(square, 3 square inches), object (square, 2 square inches)]. These models
must include some representation of size bound to each symbol for each
object because the total volume or total surface area of the objects in a
small set is computable from the working-memory representations of the
sets. This fact was demonstrated in the habituation studies in which
infants are sensitive to total surface area in a set and not to number of
objects in the set, and also in the cracker-choice studies in which infants
choose the bucket with most cracker stuff rather than the most crackers
(chapter 4). To me, the most plausible model for how this is done
implicates iconic representations of the objects, with size imagistically
represented, as well as shape, color, and other perceptual properties
bound to the symbols iconically. As I envision it, the computations that
are defined over working-memory models of this form include summing
the continuous variables encoded iconically. Of course, it is possible that
infants directly form analog magnitude representations of the continuous
variables, and directly add them, but this alternative makes a mystery of
the set-size signature. If infants could do that for three objects, what
would prevent them for doing it for four or five or six? At the very least,
the results presented in chapter 4 constrain the order of computations.
The iconic alternative laid out in chapter 4 explains the set-size signature,
even when continuous variables are driving the response.

I have several other reasons for suspecting that the representations in
core cognition are iconic. Iconic format is consistent with (through not
required by) the ways in which the representations in core cognition are
perception-like; the dedicated input analyzers all make use of perceptual/
sensory data and the content of the symbols is close to those data, while
nonetheless going beyond them. They thus could easily have iconic
format, with conceptual role providing the conceptual content. Second,
just as static images may be iconic or symbolic, so too may representations
of whole events. Consider an event in which a ball is dropped onto the
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stage floor. This event could be represented in iconic format, like a movie
unfolding through time, in which the parts of the movie correspond to
the parts of the event. Or it could be represented by any one of many
natural language sentences, “It was the floor the ball fell onto to.” If
infants represent events in iconic format, this could help make sense of
the apparently retrospective nature of the representations that underlie
many violation-of-expectancy looking-time experiments (chapters 2–6).
If the baby creates a movielike representation of an event that has just
unfolded, when an outcome is revealed, he can consult that iconic
representation in working memory, noting whether the outcome is
consistent with it. Finally, that core cognition may be represented in
terms of iconic symbols, with some of its content captured in encapsu-
lated computations defined over these symbols, may help to make sense
of the extreme lags between understanding manifest in infant looking-
time studies and that manifest only much later in tasks that require
explicit representations (see chapters 3, 5, 8–11).

The guess that the format of all core cognition is iconic is just that—a
guess—but the considerations just reviewed lead me to favor this
hypothesis. Whether this guess is right or not is a very important open
question.

Constant Through the Life Span

There are many constraints to satisfy in creating useful and reliable systems
of representation. Finding reliable enough clues to the presence of some
entity and building representational formats that support the types of
computations needed are not easy problems to solve. The distinctive sig-
natures of processing within each core cognition system reflect how natural
selection satisfied these constraints and allows us to examine whether core
cognition representations are computed throughout the life span. Perhaps
it is not surprising that they are. One might think that any representations
important enough that evolution created dedicated perceptual input
devices to detect specific classes of entities in the world, and important
enough that evolution built specialized inferential machinery for thinking
about those entities, should be useful for adults as well as children.
However, this first thought is not necessarily correct. Some innate repre-
sentational systems serve only to get development off the ground.
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The learning processes (remember there are two) that support chicks’
recognizing their mothers, for example, operate only in the first days of life,
and their neural substrate actually atrophies when their work is done.

Another reason to doubt that core cognition systems would operate
throughout the lifetime is that some of the constraints built into them are
not actually true; it is not true, for instance, that one material entity
cannot pass through the space occupied by a solid object such as a table or
a person. Once one has undergone the conceptual changes needed to
represent objects in terms of the particulate theory of matter, in which
there is space between atoms for subatomic particles to pass through, it
would be at least possible that the core cognition system would be
overridden. It is most definitely an empirical question whether core
cognition is constant throughout the life span. The core systems discussed
in chapters 3 through 7 are. Core cognition input analyzers are modular
and informationally encapsulated, protected from explicitly held con-
ceptual knowledge. We may know that it is a color change that is
necessary and sufficient for the motion of a color disk in a computer
world, but we still perceive only the causality specified by Michottian
launching (chapter 6). Similarly, we may know that ducks don’t turn into
cars, but we will compute numerical identity in an apparent motion
experiment to make two instances of duck/car motions rather than two
longer duck/duck and car/car paths (chapters 2, 3, and 7).

The evidence for continuity in the core cognition systems described
in this book consisted of finding the same signatures of processing in
adulthood and childhood. For analog magnitude representations of
number (see chapter 4), these common signatures include: (1) discrimi-
nation is subject to Weber’s law across the life span (although sensitivity
becomes greater with age); (2) the input analyzers that create analog
magnitude representations of cardinal values of sets operate in parallel
over the individuals in the set; (3) many different types of individuals
(sounds, events, objects) can be enumerated; (4) representations can be
created even when the individuals are not resolvable. For object repre-
sentations and parallel individuation (see chapter 3, 4, and 6), these
common signatures include: (1) working-memory models are subject to
absolute set-size limits across the life span (three in infancy, three or four
in adulthood); (2) the same spatio-temporal criteria are privileged over
property and kind information in the computation of individuation and
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numerical identity; (3) the same spatio-temporal parameters specify
contact causality; (4) and the same stimulus parameters specify continued
existence behind barriers versus ceasing to exist. Continuity has been least
studied in the case of agent representations, but in the few cases that have
been studied, adults establish teleological representations from motion of
geometric stimuli under the same conditions infants do. Also, adults
attribute attentional states of faceless robots under the same conditions
infants do, and fail to do so when infants fail to (chapter 5).

Continuity through the life span is an important property of core
cognition, for several reasons. The science of the mind seeks to charac-
terize cognitive architecture that carves the mind into meaningfully
different subsystems differentiated in terms of theoretically significant
properties. Continuity is one such property; most conceptual repre-
sentations are not continuous throughout development. Also, the
property of continuity is most likely related to several other distinctive
properties of core cognition, especially those that derive from the ways in
which the representation resemble perceptual representations (innate
input analyzers, possible iconic format).

Domain-Specific Learning Mechanisms

All of the core cognition systems I described are learning mechanisms.
Their primary function, I would guess, is to enable the infant to acquire
useful information about his or her immediate environment. Where is
that object, so I can reach for it? What is my mother intending to do?
Which container has more cracker-stuff? It is often overlooked that
acquiring such information requires learning, and therefore, core cogni-
tion systems are learning mechanisms. Furthermore, the systems that
acquire such information are domain specific; the mechanisms that pick
out small sets of middle-size, separately movable objects, and that repre-
sent their properties, including quantitative variables, their locations, and
their causal interrelations, are different from those that create repre-
sentations about the particular goals of particular agents. Thus, core
knowledge systems are domain specific learning mechanisms.

This being said, the least-studied aspect of infant core cognition
systems is how they themselves are enriched by learning. How do object,
agent, number, and causality representations themselves change as the
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child acquires knowledge of entities of these types? Although core
cognition systems operate continuously through the life span, like per-
ceptual systems, they are certainly not static and unchanging. There has
been no research into whether core cognition includes specialized
within-module learning mechanisms aimed at creating the representa-
tions that will be recruited in the episodic learning discussed above, akin
to the learning process through which the indigo bunting identifies north
in the night sky.

Beyond Core Cognition: Other Sources of Innate Concepts

The representations in core cognition are input to central reasoning
processes, and it is certainly possible that there are also innate nonmodular
central processes that yield conceptual representations. Chapter 6 con-
sidered the possibility that there may be an innate central mechanism for
forming causal representations. Michotte suggested that causal repre-
sentations arise in core cognition, part of the domain of object repre-
sentations. He posited innate input analyzers that output causal
representations on the basis of strictly limited spatio-temporal parameters
of interactions among physical objects. Chapter 6 rejected Michotte’s
proposal on the grounds that causal cognition integrates across different
domains of core cognition (object representations and agent repre-
sentations) from as early in development as we have evidence for causal
representations at all.

Innate central causal representations could come in either of two
quite different varieties. There may be innate central processes that
compute causal relations from patterns of statistical dependence among
events, with no constraints on the kinds of events. Or there may be
specific aspects of causality that are part of distinct core cognition systems
(e.g., Michottian contact causality within the domain of core object
cognition and intentional causality within the domain of agent cogni-
tion), and these may be centrally integrated innately. No evidence I
know of would allow us to decide between these two broad types of
possibilities. Further, they are not mutually exclusive; both types of
central integration of causal representations could be part of infants’
innate endowment.
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I discussed that the developmental origins of causal cognition brings
home the point that there is no reason to believe that core cognition
systems are the sole source of innate conceptual content. Rather, just the
opposite. One of the main reasons to believe that core cognition
representations are conceptual rather than perceptual is their rich con-
ceptual role—that they enter into inferences, including causal inferences,
that integrates them. A natural consequence of this rich inferential role is
the possibility of innate central representations whose content goes
beyond that embedded in the systems of core cognition themselves.

Beyond Core Cognition: Public Symbols

Other animals do not create external public representations of quanti-
fiers, sortals, epistemic states, causality, and so on. Other animals may
represent their world in terms of such concepts, but they do not
communicate about such things. I assume that domain-specific learning
mechanisms, together constituting a language acquisition device (LAD),
make possible language acquisition, but I have made no effort to
summarize the current state of the art in characterizing the LAD.
Whatever its nature, the LAD is another way innate cognitive archi-
tecture goes beyond core cognition, for the symbols in language are not
iconic.

Language acquisition and conceptual development are intimately
related. The representations in core cognition support language learning.
They provide some of the meanings that lexical items and morphological
and syntactic contrasts express. Chapter 7 considered how prelinguistic
set-based quantification supports the learning of natural language quan-
tifiers, and prelinguistic representations of individuals support the learning
of terms that express sortals. Because I seek here an account of the origin
of concepts, I focused mainly on the effects of language learning on
conceptual development. Language learning makes representations more
salient or efficiently deployed (chapter 7; so-called weak effects of lan-
guage on thought). Language also shapes thought in the strongest possible
way—Quinian linguistic determinism (chapters 8–11). Language learning
plays a role in creating new representational resources that include
concepts previously unrepresentatable.
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Chapter 7 reviewed two cases in which very early language learning
affects nonlinguistic representations. First, learning, or even just hearing,
labels for objects influences the establishing/deploying of sortal concepts.
In her original studies on object individuation, Xu (Xu and Carey, 1996)
found that most 10-month-old infants do not yet comprehend the labels
for the objects she used in her studies, but those who did (based on
parental report) succeed at individuating the objects on the basis of the
kind distinction alone. Xu also found that labeling the objects as they are
shown to the babies one at a time (whether familiar kinds with familiar
labels or novel kinds with novel labels) leads 9-month-old infants to
succeed at establishing representations of two objects in the events,
whereas in the absence of contrastive labeling or when the appearance of
objects is associated with other contrasting noises, they fail.

The second case concerned morphological development. Chapter 7
reviewed evidence that mastery of explicit linguistic singular/plural
morphology plays a role in deploying this distinction in nonlinguistic
representations of sets. In the studies on set-based quantification, Barner
and his colleagues (2007) found that 22- to 24-month-old infants spon-
taneously deployed a singular-plural distinction in a nonlinguistic object
search task only if they were already marking plurality linguistically.

Chapter 7 argued that these are both most likely weak effects of
language learning on thought. In both cases there is good evidence that
prelinguistic infants have the representational capacity in question and
deploy it under different nonlinguistic conditions. There are several
different (and not mutually exclusive) mechanisms that could mediate
such weak effects. Take the singular/plural case for an example. Learning
a label for a contrast could simply increase the salience of that contrast,
making it more likely to be deployed in any given nonlinguistic context.
Alternatively, syntactic bootstrapping could be at work. The linguistic
contrast might have been learned in some context in which the relevant
semantic contrast is automatically deployed (as when sets move together
as united wholes), and then when the child hears a plural applied to a case
where she would spontaneously deploy parallel individuation alone, the
presence of the plural marking causes her to analyze the set as a plurality.
Having done so, she is more likely to spontaneously do so again in the
future, even in the absence of linguistic input. And finally, plural marking
provides an explicit linguistic symbol that may occupy a single slot in
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working memory, thus making encoding more efficient. In all these
ways, language learning may effect the representations activated and
deployed in nonlinguistic situations, even if language learning played no
critical role in the creation of a representational resource with more
expressive power than any available before (see chapter 7).

Although I believe that the two cases discussed in chapter 7 reflect
at most weak effects of language on thought, Quinian linguistic deter-
minism also occurs, as documented in chapters 8 through 11. Further-
more, “weak” does not mean the same thing as “uninteresting” or
“unimportant.” Creating representations whose format is noniconic
paves the way for integrating the concepts in core cognition with the rest
of language, and is a necessary prerequisite for the bootstrapping
mechanisms that underlie Quinian linguistic determinism.

Discontinuity—The Descriptive Problem

Discontinuity in conceptual development arises at two different levels of
abstraction. Most generally, explicit intuitive theories differ qualitatively
from, and are thus discontinuous with, systems of core cognition. Most
human conceptual representations differ from those in core cognition with
respect to all those properties that characterize core cognition. Consider the
concepts planet or germ. These concepts are not the output of innate input
analyzers, and so are neither innate nor causally connected to the entities
they represent as are the concepts in core cognition. They are neither
evolutionary ancient nor the output of domain-specific learning
mechanisms. Unlike core cognition representations, their format is cer-
tainly not iconic, and they are not embedded in systems of representation
that are constant over development. Explicit conceptual representations
can be, and often are, overturned in the course of conceptual development.

Chapters 8 through 11 provided evidence for conceptual dis-
continuities at a more specific level—discontinuities within particular
content domains. I documented discontinuities in mathematical devel-
opment, where “discontinuity” meant “more expressive power.” I also
documented historical discontinuities within explicit scientific theories
and within intuitive theories, where “discontinuity” meant “local
incommensurability.”
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Specific discontinuities of both types (more expressive power,
incommensurability) usually involve two successive late-developing
conceptual systems. But transitions from core cognition to later devel-
oping conceptual representations also display both types of discontinuity.
The learning mechanisms that underlie specific developmental dis-
continuities also explain the construction of explicit representational
systems with none of the properties of core cognition.

Increasing Expressive Power—Integers and Rational Number

Establishing conceptual discontinuity requires characterizing two suc-
cessive conceptual systems (conceptual system 1, or CS1, and conceptual
system 2, or CS2) and specifying the qualitative differences between the
two. One must provide evidence that each underlies thought at particular
successive historical or ontogenetic moments. Discontinuities involve
systems of concepts and inferences, and so evidence for discontinuity
must include evidence of within-child consistency over a wide range of
probes of the underlying representational capacity. Also, mastery of CS2
must be difficult, and there should be initial assimilation of input couched
in the language of CS2 in terms of the concepts of CS1. Chapters 4, 7, 8,
and 9 illustrate two different cases of developmental discontinuity in the
course of mathematical development, the first resulting in the capacity to
represent positive integers and the second in the capacity to represent
fractions. I review each case in turn.

Core cognition contains three systems of representation with
numerical content: parallel individuation of small sets of entities in
working-memory models, analog magnitude representations of number,
and set-based quantification. The experiments that uncover the existence
and nature of these representations, as well as showing that they reveal
distinct processing signatures and are elicited in different contexts, are
reviewed in chapters 4 and 7. These are the CS1s. The CS2, the first
explicit representational system that represents the positive integers, is the
verbal numeral list embedded in a count routine. Deployed in accordance
with what Gelman and Gallistel (1978) call the counting principles, the
verbal numerals implement the successor function. For any numeral that
represents cardinal value n, the next numeral in the list represents n þ 1.
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Chapter 8 argued that CS2 is qualitatively different from each of the
CS1s because none of the CS1s has the capacity to represent the integers.
Parallel individuation includes no summary symbols for quantity at all,
and has an upper limit of three or four on the size of sets it represents. Set-
based quantification includes summary symbols for quantity (plural
markers, symbols that express concepts like some or all), and importantly
contains a symbol with content that overlaps considerably with that of
“one” (namely, the singular determiner), but the singular determiner is
not embedded within a system of arithmetical computations. Also, set-
based quantification in the service of natural language quantifiers has an
upper limit on the specific cardinal values that are expressed (e.g., with
dual and trial markers). Analog magnitude representations include sum-
mary symbols for quantity that are embedded within a system of arith-
metical computations, but they represent only approximate cardinal
values; there is no representation of exactly 1, and therefore no repre-
sentation of þ1. Analog magnitude representations cannot even resolve
the distinction between 10 and 11 (or any two successive integers beyond
its resolving capacity), and so cannot express the successor function. Thus,
none of the CS1s can represent 8, or 10, or 342. This analysis makes
precise the senses in which the verbal numeral list (CS2) is qualitatively
different from those representations that precede it: it has a totally dif-
ferent format (verbal numerals embedded in a count routine) and more
expressive power than any of the CS1s that are its developmental sources.

Consistent with the claim that CS2 is qualitatively different from
each of these three CS1s, it is indeed difficult to learn. American middle-
class children learn to recite the count list and to carry out the count
routine in response to the probe “How many . . . ?” shortly after their
second birthday. They do not learn how counting represents number for
another year and a half or two years. As required by the claim that input
stated in the language of CS2 is assimilated to CS1, chapters 7 and 8

reviewed several lines of evidence that verbal numerals are initially
interpreted as quantifiers. “Two” is often analyzed as a generalized plural
marker, and numerals higher than those for which the child has assigned
exact meanings are often used as if they meant some or plural as well.

Subset-knowers (those children who have assigned numerical
meanings for just a subset of the numerals in their count list) differ
qualitatively from CP-knowers (those children who understand the
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counting principles and thus use counting to represent the cardinal values
of sets). Children can be placed into a knower level on the basis of
Wynn’s Give-a-Number task, and this placement predicts performance
on a very wide variety of other tasks. CP-knowers, but not subset-
knowers, count to produce a set when asked to give the experimenter a
particular number of objects (e.g., “five”), know how to fix a set if
they’ve miscounted, correctly repeat the last word of a count when
probed again “How many . . . ?” (rather than recounting, or producing
a numeral that was not the last word of the count), and so on (see
chapter 8). These tasks make vastly different information-processing
demands on the child, and so the within-child consistency suggests that
CP-knowers command a representational resource the subset-knowers
lack—namely, the verbal numeral representation of integers.

Within-child consistency is found even within knower levels:
“one”-knowers according to Wynn’s Give-a-Number task reveal car-
dinal knowledge of only the numeral “one” on many other tasks as well.
For instance, when asked to estimate sets, they apply numerals larger than
“one” at random to sets larger than one, and when asked which of two
cards depicts n objects, for any two cards with sets larger than one, they
answer at random. Similarly, “two”-knowers on Wynn’s Give-a-
Number task can estimate the number of objects in sets of one or two,
but produce higher numerals at random for larger sets, and when asked
which of two cards depicts n objects, answer nonrandomly only if one of
the sets contains one or two objects. Analogous patterns are shown by
“three”-knowers and by “four”-knowers. In sum, the construction of the
numeral list representation is a paradigm example of developmental
discontinuity. How CS2 transcends CS1 is precisely characterized: CS2
is difficult to learn, adult language expressing CS2 is assimilated to CS1,
and children’s performance on a wide variety of tasks consistently reflects
either CS1 or CS2.

Chapter 9 presents another parade case of developmental discon-
tinuity within mathematical representations. The CS1 in this case is
the count list representation of the positive integers, enriched with the
understanding that there is no highest number. Explicitly asked about the
existence of a highest number, 5-year-olds say no, and they explain that
for any candidate highest number, someone could always add one to it.
Also around this age children begin passing Piaget’s conservation-of-
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number tasks, showing that they have an explicit awareness that 1–1
correspondence and only 1–1 correspondence guarantees numerical
equivalence. Children also build models of addition and subtraction
based on the successor function and 1–1 correspondence, they concep-
tualize multiplication as repeated addition, and they begin to explicitly
understand base 10 notation. By ages 6 through 8, children’s arithmetical
understanding is very rich and very firmly built on the concept of number
as positive integer.

In CS2, number means any point on a number line that can be
expressed x/y, where x and y are integers. In CS2, rather than it being the
case that integers are the only numbers, there are an infinity of numbers
between any two integers, or, indeed, between any two rational numbers.
The question of the next number after n (where n might be an integer or
not) no longer has an answer. Thus, CS2 has more expressive power than
CS1 (there are all of these extra numbers), and numbers are related to each
other differently in the two systems. The new relation in CS2 is division.
Division cannot be represented in terms of the resources of CS1, which
model only addition, subtraction and multiplication of integers. CS2’s
division cannot be represented as repeated subtraction of integers.

Thus, CS2 is qualitatively different from and has more expressive
power than CS1. Furthermore, as required by this analysis, CS2 is indeed
extremely difficult for children to learn. The teaching of rational number
is the most studied topic in the literature on mathematics education,
reflecting both its importance and its difficulty. One-half of college-
bound high school students taking the SAT exams do not understand
fractions and decimals. Furthermore, as reviewed in chapter 9, explicit
instruction concerning rational number is initially assimilated to CS1, and
children are consistent over a wide range of probes as to how they
conceptualize number. Whether children can properly order fractions
and decimals, how they justify their ordering, how they explain the role
of each numeral in a fraction expressed “x/y”, whether they agree there
are numbers between 0 and 1, and whether they believe that repeated
division by 2 will ever yield 0 are all interrelated. What the child does on
one of these tasks predicts what he or she will do on all of the others. CS1
and CS2 are each coherent conceptual systems, qualitatively different
from each other.
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In these two developmental episodes, one way in which each CS2 is
qualitatively different from the preceding CS1s is that the CS2s have
vastly more expressive power than the CS1s. At the end of each episode,
children have constructed a representational system that can express an
infinity of concepts not expressible before (integers in one case, rational
numbers in the other). Before the construction of the numeral list,
children cannot think thoughts formulated in terms of the concepts 7, 12,
348, and so forth; before the construction of rational number, children
cannot think thoughts formulated in terms of the concepts 7/8 or 15/16
or 1/20, and so on, ad infinitum.

Local Incommensurability

In all of the other cases of conceptual discontinuities considered in these
pages, there is no clear sense that there is more expressive power in CS2
than in CS1. Rather, the two conceptual systems are qualitatively dif-
ferent because they are not mutually translatable, because they are locally
incommensurable. One cannot express the beliefs that articulate CS2 in
the concepts of CS1 and vice versa. That the concepts of CS2 cannot be
expressed in terms of the conceptual vocabulary of CS1 is one reason CS2
is so difficult to learn. Chapter 10 discusses the comparable difficulty
holders of CS2 have understanding CS1, in both historical and devel-
opmental cases of conceptual change.

Incommensurability arises when episodes of conceptual develop-
ment have required conceptual change. Conceptual changes arise when
there is what Kitcher (1978) calls “mismatch of referential potential.”
There are multiple methods of reference fixing and many types of sus-
taining mechanisms that connect entities in the world with symbols in the
mind. In cases of conceptual change, these fractionate, leading to change,
but overlap, in content. Conceptual changes are of several kinds,
including differentiations such that the undifferentiated concept in CS1
plays no role in CS2, and is even incoherent from the point of view of
CS2, coalescences in which ontologically distinct entities from the point
of view of CS1 are subsumed under a single concept in CS2, and changes
in conceptual type and in content-determining conceptual cores.

Chapter 9 suggested that not only does the system of number
representations including the rationals have more expressive power than
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the numeral list representation of the integers, the two can also be seen as
incommensurable. Some of the conceptual changes involve the concepts
of number, subtraction, and division. In CS1, division is not differenti-
ated from subtraction, and ‰ is not a number. There is a change in the
core of the concept of number, from integer to point on the infinitely
dense number line. As acknowledged in chapter 9, this is not a canonical
example of incommensurability because the concept integer continues to
play a role in CS2, and rational numbers can, of course, be defined in
terms of integers, although not without the concept of division, which is
not available in CS1.

Conceptual change occurs when sets of concepts that are interdefined
are acquired together, en suite, with new concepts not representable in
CS1 emerging and with content determining interconnections that
differ from those in CS1. Kuhn’s (1962; 1982) canonical examples of
incommensurable theories were the phlogiston and oxygen theories of
combustion. In chapter 10, I offered the historical change from the
source-recipient theory of thermal phenomena to caloric theory as
another example, focusing on the differentiation of heat from tempera-
ture. My worked-out example of conceptual change in childhood
involved the construction of an intuitive theory of matter, and to draw
out the parallels with historical cases, I focused on the differentiation of
weight from density.

Chapter 10 described many phenomena that suggest that children’s
concepts of the physical world may be incommensurable with ours: their
confidence that a small piece of Styrofoam weighs 0 grams, nonconser-
vation of the amount of matter and of weight, the claim that dreams are
made of air, that shadows exist in the dark but we just can’t see them.
Huh? If children’s concepts are incommensurable with the target concepts
of science instruction, the latter should be very difficult to master, and
indeed they are. This is one of the domains in which very well thought
out curricula fail to induce conceptual change. A large proportion of high
school students have failed to construct a physical theory in which material
substances are distinguished from nonmaterial physical entities that
interact causally with material ones (e.g., heat), and in which weight is an
extensive quantity that provides a measure of the amount of matter, and in
which weight is differentiated from density. In CS2, density is an intensive
quantity that is a characteristic property of material kinds.
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At the heart of establishing local incommensurability is characterizing
two successive physical theories, providing evidence that each is a theory
children actually hold, and, of course, displaying the incommensurability.
Chapter 10 characterized an initial theory (CS1), in which an undiffer-
entiated concept weight/density functions coherently. A translator’s gloss
was provided, sketching the central concept degree of heaviness akin to the
Experimenters’ degree of heat, which was analogously undifferentiated
between the concepts heat and temperature. A sketch of CS1’s concept of
physically real/substantial—the concept closest to CS2’s material—was also
part of the translator’s gloss. The CS1’s undifferentiated concept degree of
heaviness, or weight/density, cannot be expressed in terms of any con-
ceptual system that differentiates the two concepts, weight and density. It is
incoherent from the point of view of CS2. Evidence for an undiffer-
entiated concept weight/density is that there are no contexts where the
child relies exclusively on one rather than the other, and also that the
concepts of CS1 lead children to contradictions they cannot resolve.
Finally, there is striking within-child consistency across the many dis-
parate tasks that diagnose CS1 and CS2. These tasks included sorting
entities as matter vs. nonmatter; judging whether matter would cease to
exist upon repeated division (continuity-of-matter tasks); continuity of
weight and volume; conservations; modeling weight, density, and
volume of a set of objects; ordering objects with respect to weight,
density, and volume; and measuring weight, density, and volume.
Consistent performance on this wide range of tasks provides evidence
that children actually hold CS1, as characterized.

Pondering children’s responses on these tasks is what allows the
reader to come to represent CS1. Constructing a set of coherent concepts
that yield the same judgments as those of children with CS1 is a boot-
strapping process. Aided by the translator’s gloss, the reader must create a
conceptual system in which the concept degree of heaviness, undiffer-
entiated between weight and density functions coherently.

The concepts within CS1, like those in CS2, are mutually con-
straining because they are interdefined. This explains the striking within-
child consistency we observe. To establish that CS1 and CS2 are
incommensurable, chapter 10 characterized ancestor concepts in CS1 that
are undifferentiated with respect to those in CS2. These undifferentiated
concepts are not represented at all in CS2, even as superordinate
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concepts, because they are incoherent in terms of the concepts in the
latter theory. The most fully worked-out example was weight/density;
another touched on was air/nothing. Chapter 10 also characterized
ancestor concepts in CS1 that represent kinds as ontologically distinct
which CS2 unites under a single concept. An example is CS2’s matter,
uniting what are vastly different kinds in CS1 (object, liquid, air, or gas).
Ancestor concepts in CS1 also differ from their descendants in CS2 in
type and features taken to be essential. The essential features of CS1’s
undifferentiated concept of matter/physically real are perceptual access
and causal interaction with other external physical entities. The essential
features of the CS2’s concept of matter are weight and occupying space.
An interconnected change occurs within the concept of degree of
heaviness. In CS1, degree of heaviness is a property of some material/
physically real entities, such as a large piece of Styrofoam but not a small
piece. In CS2, weight is taken to be an essential feature of all material
entities, a property that provides an extensive measure of amount of
matter. The local incommensurability between CS1 and CS2 derives
from simultaneous adjusting these concepts to each other. Differentia-
tions implicating incommensurability never occur independently of
simultaneous coalescences, nor do they occur independently of changes
of the causally deepest properties represented within each of a set of
interrelated concepts.

This analysis of local incommensurability illustrates the fruits of what
Nancy Nersessian (1992) calls “cognitive historical analysis,” in which
philosophers and historians of science join forces with cognitive scientists
to understand knowledge acquisition in both the history of science and
the individual. It also illustrates the fruits of the theory-theory of con-
ceptual development. The same questions can be asked of episodes of
knowledge acquisition in individual children and historical theory
changes, in spite of the manifest differences between scientists and chil-
dren, and sometimes these questions receive the same answers. I juxta-
posed a case of incommensurability between historical theories (the
Florentine Academician’s source-recipient theory of thermal phenomena
and the caloric theory in which heat and temperature have been dif-
ferentiated) and a case of incommensurability of between intuitive
theories (the 6-year-old’s theory of the physical world and that of the
adolescent’s, in which a concept of matter that supports the
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differentiation of weight from density has been constructed) to illustrate
several such questions that receive the same answer. These include: What
is an “undifferentiated concept”? What counts as evidence for lack of
differentiation, as opposed to other representational states of affairs that
might yield undifferentiated language? What distinguishes episodes of
conceptual development that involve conceptual change from episodes
involving only belief revision and knowledge enrichment formulated
over a constant set of concepts?

Quinian Bootstrapping

Ultimately, learning requires adjusting expectations, representations, and
actions to data—whether the learning mechanism is associative, Bayesian,
or deductive. Abstractly, all of these learning mechanisms are variants of
hypothesis-testing algorithms. The representations most consistent with the
available data are strengthened; those hypotheses are accepted. However, in
cases of developmental discontinuity, the learner does not initially have the
representational resources to state the hypotheses that will be tested, to
represent the variables that could be associated or could be input to a
Bayesian learning algorithm. We seek a learning process that can create
new representational machinery, new concepts that articulate hypotheses
previously unstatable. Quinian bootstrapping is one such process.

The capacity for explicit symbolization makes possible the creation of
mental symbols that are not yet connected to anything in the world. In
Quinian bootstrapping episodes, mental symbols are established that cor-
respond to newly coined or newly learned explicit symbols. These are
initially placeholders, getting whatever meaning they have from their
interrelations with other explicit symbols. As is true of all word learning,
newly learned symbols must necessarily be initially interpreted in terms of
concepts already available. But at the onset of a bootstrapping episode, these
interpretations are only partial—the child (or scientist) does not yet have the
capacity to formulate the concepts the symbols will come to express.

The bootstrapping process involves modeling the phenomena in the
domain, represented in terms of whatever concepts the child or scientist
has available, in terms of the set of interrelated symbols in the placeholder
structure. Both structures provide constraints, some only implicit and
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instantiated in the computations defined over the representations. These
constraints are respected as much as possible in the course of the modeling
activities, which include analogy construction and monitoring, limiting
case analyses, thought experiments, and inductive inference.

I drew on bootstrapping processes to explain all the developmental
discontinuities sketched above. In the case of the construction of the
numeral list representation of the integers, the memorized count list is the
placeholder structure. Its initial meaning is exhausted by the relation
among the external symbols: they are stably ordered. “One, two, three,
four, . . . ” initially has no more meaning for the child than “a, b, c, d,
. . . ” To illustrate that it is not difficult to describe bootstrapping processes
that might effect a given CS1/CS2 transition, chapter 8 sketched two
different ones that could yield numeral list representation of the integers.
The two differed in the initial partial meanings children assign for the
placeholder symbols in the list. On both theoretical and empirical
grounds, I argued against the proposal that analog magnitude repre-
sentations provide the input to the process. Rather, the details of the
subset-knower period suggest that the resources of parallel individuation,
enriched by the machinery of set-based quantification, provide the partial
meanings children assign to the placeholder structures that get the
bootstrapping process off the ground. The meaning of the word “one”
could be subserved by a mental model of a set of a single individual {i},
along with a procedure that determines that the word “one” can be
applied to any set that can be put in 1–1 correspondence with this model.
Similarly “two” is mapped onto a longterm memory model of a set of
two individuals {j k}, along with a procedure that determines that the
word “two” can be applied to any set that can be put in 1–1 corre-
spondence with this model. And so on for “three” and “four.” This
proposal requires no mental machinery not shown to be in the repertoire
of infants—parallel individuation, the capacity to compare models on the
basis of 1–1 correspondence, and the set-based quantificational machin-
ery that underlies the singular/plural distinction and makes possible the
representation of dual and trial markers. The work of the subset-knower
period of numeral learning, which extends in English-learners between
ages 2.0 and 3.6 or so, is the creation of the long-term memory models
and computations for applying them that constitute the meanings of the
first numerals the child assigns numerical meaning to.
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Once these meanings are in place, and the child has independently
memorized the placeholder count list and the counting routine, the
bootstrapping proceeds as follows: the child notices the identity between
the singular, dual, trial, and quadral markers and the first four words in the
count list. The critical analogy that provides the key to understanding
how the count list represents number is between order on the list and
order in a series of sets related by an additional individual. This analogy
supports the induction that any two successive numerals will refer to sets
such that the numeral further along in the list picks out a set that is one
greater than that earlier in the list.

This proposal illustrates all of the components of bootstrapping
processes: placeholder structures whose meaning is provided by relations
among external, explicit symbols, partial interpretations in terms of
available conceptual structures, modeling processes (in this case analogy),
and an inductive leap. It also captures what is known about the subset-
knower period, and the ways in which subset-knowers differ from
those children who have worked out how counting represents number.
The greater representational power of the numeral list than that of any
of the systems of core cognition from which it is built derives from
combining the representational resources from the capacity to represent
serial order (which gives the child the placeholder structure), set-based
quantification (which gives the child singular, dual, trial, and quadral
markers), and the numerical content of parallel individuation (which is
largely embodied in the computations carried out over sets represented in
memory models with one symbol for each individual in the set). The
child creates symbols that express information that previously existed
only as constraints on computations. Numerical content does not come
from nowhere, but the process does not consist of defining “seven” in
terms of symbols available to infants.

Chapters 10 and 11 further illustrate the fruits of cognitive historical
analysis, as philosophers and historians of science have joined forces
with cognitive scientists to illuminate the cognitive processes involved in
conceptual change. Lessons from the analysis of the bootstrapping pro-
cesses used by Kepler, Darwin, and Maxwell inform the curricular
interventions of math and science educators, and the success of these
interventions in turn provides evidence for the proposed bootstrapping
processes.
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In all three of these historical cases, the bootstrapping process was
initiated by the discovery of a new domain of phenomena that became
the target of explanatory theorizing. The phenomena were initially
represented in terms of the theories available at the outset of the process,
often with concepts that were neutral between those theories and those
that replaced them. Incommensurability is always local; much remains
constant across episodes of conceptual change. For Kepler, the phe-
nomena were the laws of planetary motion; he sought to understand why
these take the form they do. For Darwin, the phenomena were the
variability of closely related species and the exquisite adaptation to local
environmental constraints. For Maxwell, the phenomena were the
electromagnetic effects discovered by Faraday.

In all three of these cases, the scientists created an explanatory
structure that was incommensurable with any available at the outset. In all
three cases, the process of construction involved positing placeholder
structures and modeling processes that aligned the placeholders with the
new phenomena. In all three cases, this process took years. For Kepler,
the hypothesis that the sun was somehow causing the motion of the
planets was a placeholder until the analogies with light and magnetism
allowed him to formulate the concept vis motrix. For Darwin, the source
analogies were artificial selection and Mathus’s analysis of the implications
of a population explosion for the earth’s capacity to sustain human beings.
For Maxwell, a much more elaborate placeholder structure was given by
the mathematics of Newtonian forces in a fluid medium. These place-
holders were formulated in external symbols: natural language, mathe-
matical language, and diagrams.

Of course, the source of these placeholder structures is importantly
different in the cases of conceptual change in the history of science and
in the developmental cases. The scientists posited them as tentative
ideas worth exploring, whereas children acquire them from adults, in
the context of language learning or science education. This difference is
one reason meta-conceptually aware hypothesis formation and testing are
likely to be important in historical cases of conceptual change. Still, many
aspects of the bootstrapping process are the same whether the learner is a
child or a sophisticated adult scientist. Both scientists and children draw
on explicit symbolic representations to formulate placeholder structures
and on modeling devices such as analogy, thought experiments, limiting
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case analyses, and inductive inference to infuse the placeholder structures
with meaning.

In the course of creating the theory of electromagnetic fields,
Maxwell invented the mathematics of quantum mechanics and relativity
theory. This illustrates an aspect of bootstrapping often seen in the
development of the physical sciences; mappings between mathematical
structures and physical ones have repeatedly driven both mathematical
development and theory change. Another salient example is Newton’s
advances in the formulation of calculus in the course of his work on
physics. Chapter 11 describes a bootstrapping process in the course of
math and science education in which mathematical development and
physical development go hand in hand, paralleling the historical cases.
Constructing mappings between mathematical representations and
representations of the physical world is an essential part of the processes
through which both representations of rational number and representa-
tions of the physical world in which weight is differentiated from density
are constructed. As predicted by this analysis, chapter 11 documents that
the two conceptual changes constrain each other. The child’s progress in
conceptualizing the physical world exquisitely predicts understanding of
rational number and vice versa. Children whose concept of number is
restricted to positive integers have not yet constructed a continuous
theory of matter nor a concept of weight as an extensive variable,
whereas children who understand that number is infinitely divisible have
done both.

The best evidence concerning the bootstrapping processes actually
involved in each of these conceptual changes derives from studies of the
effectiveness of curricula built upon them compared with control cur-
ricula that are not. The classrooms are randomly assigned to the exper-
imental curriculum and control curricula that cover the same topics. In
these studies, pretests diagnose students’ initial concepts using the same
kinds of tasks that allow us to describe the conceptual change in the first
place. Posttests then establish the conceptual progress made; the curricula
explicitly implementing bootstrapping processes greatly outperform
otherwise excellent curricula that do not.

Chapter 11 briefly described Moss and Case’s (1999) approach to the
construction of rational number. The mathematical notations—percen-
tages, decimals, and fractions—are initially placeholders, and modeling
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continuous quantities and computations over continuous quantities in
terms of them is what infuses them with meaning. Moss and Case
reversed the usual sequence of presentation of mathematical notation.
They began with percentages, then moved to decimals and finally to
fractions. This order of presentation was chosen because by 4th-grade
children have a firm understanding of the count list from 1 to 100 and can
fluently divide by 2. That is, although they do not yet fully understand
division, they certainly know that half of 100 is 50, and that 75 is half-way
between 50 and 100, and so on. This allows an initial mapping between
the physical and mathematical worlds Moss and Case could promote—
between the fullness of a cup and percentages. In this way, 100% is
completely full, 50% is one-half full, and so on. After exploring this
mapping, children were challenged to come up with ways of expressing
one-half a quarter-full, and also to extend the mapping to other con-
tinuous dimensions such as length. In these contexts, children were
introduced to decimal notations and explored translating between these
and percentages, solving problems that involve mapping each to con-
tinuous quantities. The modeling process, which involves multiple
iterations of mappings between the newly constructed mathematical
notations and the physical phenomena, makes explicit in a common
representation what was only implicit in the computations defined over
physical quantities. Before the bootstrapping episode, children can carry
out computations such as splitting and folding in half over physical
quantities, and the bootstrapping process creates mathematical repre-
sentations of division, percentages, decimals, and fractions to express and
vastly expand these computations.

Carol Smith (2007) and Marianne Wiser (Wiser & Amin, 2002) each
characterized the bootstrapping processes underlying conceptual change
in intuitive physical theories, and each tested their proposals in teaching
interventions. Because of the interrelation between the mathematical
development of representations of rational number and the conceptual
changes described in chapter 10 that results in material becoming dif-
ferentiated from physically real and weight from density, chapter 11

illustrated their proposals by describing Smith’s teaching interventions
aimed at fostering this very conceptual change. Although developed
independently of Nersessian’s analysis of Maxwell’s construction of
electromagnetic theory, Smith’s curriculum draws on all of the same
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components of the bootstrapping process. First, she engages students in
explaining new phenomena—ones that can be represented as empirical
generalizations stated in terms of concepts they already represent, even if
not coherently. These include the proportionality of weight to overall
size, explaining how different-size entities can weigh the same, predicting
which entities will float in which liquids, and sorting entities on the basis
of whether they are material or immaterial, focusing particularly on the
ontological status of gases. She then engages students in several cycles of
analogical mappings between mathematical representations (the mathe-
matics of extensive and intensive variables, ratios, and fractions) and the
physical world. Like Moss and Case, she begins with those aspects of
mathematics best understood (the additive and multiplicative structures
underlying integer representations) and begins with modeling the
extensive quantities of weight and volume. The curriculum soon moves
to calculating the weight and volume of very small entities, using divi-
sion. These activities are supported by thought experiments (which are
themselves modeling devices) that challenge the students’ initial concept
of weight as degree of heaviness (felt weights undifferentiated from
density), densitys undifferentiated from, leading them into a contradic-
tion between their claim that a single grain of rice weighs 0 grams and the
obvious fact that 50 grains of rice have a measurable weight. These
activities, along with measuring the weight of a fingerprint and a signa-
ture with an analytical balance, support conceptualizing weight as an
extensive variable that is a function of the amount of matter. Under-
standing the implications of the limits of the sensitivity of the measure-
ment device helps support the extensive concept weight.

Just as Maxwell used visual models to represent Newtonian forces in
a fluid medium because these were easier to think with, to complete the
differentiation of weight from density Smith makes use of visual models
that represent the mathematics of extensive and intensive quantities.
Visual objects are created out of numbers of boxes of a constant size and
numbers of dots distributed equally throughout the boxes. Numbers of
dots and numbers of boxes are the extensive variables, numbers of dots
per box are the intensive variable. Students first explore the properties of
these visual models as objects in themselves, discovering that they can
derive the value of any one of these variables knowing the values of the
others, and exploring the mathematical expression of these relations: dots
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per box equals number of dots divided by number of boxes. Students are
guided to use these visual objects as models of physical entities, with
number of boxes representing volume and number of dots representing
weight. Density (in the sense of weight/volume) is visually represented in
this model as dots/box, and the models make clear how it is that two
objects of the same size might weigh different amounts—because they are
made of materials with different densities, why weight is proportional to
volume given a single material, and so on. The models are also used to
represent liquids, and students discover the relevant variables for pre-
dicting when one object will float in a given liquid and what proportion
of the object will be submerged. This activity is particularly satisfying for
students because, at the outset of the curriculum, with their undiffer-
entiated weight/density concept, they cannot formulate a generalization
about which things will sink and which will float. Density as a charac-
teristic property of material kinds does explanatory work in modeling the
phenomena the curriculum challenges the students with. Differentiating
weight from density in the context of these modeling activities completes
the construction of an extensive concept of weight begun in the first part
of the curriculum.

Just as Maxwell’s modeling activities supported both mathematical
and theoretical developments, through these modeling processes students
consolidate the mathematics of intensive and extensive variables. Just as
Maxwell engaged in several repeated episodes of analogical mapping in
the course of developing a physical theory of electromagnetic forces, so
Smith engages children in repeated episodes of model building in the
course of creating a physical theory in which weight and volume are each
extensive variables that provide a measure of the amount of matter, each
being potentially infinitely divisible, and in which density is an intensive
variable differentiated from weight.

The formula d ¼ w/v (density equals weight divided by volume) is a
placeholder structure at the beginning of the bootstrapping process. The
child has no distinct concepts of weight and density to interpret the
proposition. As in all cases of bootstrapping, the representation of
placeholder structures makes use of the combinatorial properties of lan-
guage. Density here is a straightforward complex concept, defined in
terms of a relation between weight and volume (division), and the child
(if division is understood) can understand this sentence as “Something
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equals something else divided by something else.” “Weight” and
“volume” may be partially interpreted in terms of concepts in CS1 that
are ancestors to those in CS2, but the child does not know the word
“density” and when it is learned in this context it is mapped onto the
same ancestor concept as that for “weight,” namely, CS1’s degree of
heaviness. The dots per box model is also a placeholder structure at the
beginning of the bootstrapping process, a way of visualizing the relations
between an intensive variable (dots per box) and two extensive variables
related by division, and thus provides a model that allows the child to
think with, just at Maxwell’s models allowed him to think with the
mathematics of Newtonian mechanics as he tried to model Faraday’s
phenomena. At the outset of the process the child has no distinct con-
cepts of weight and density to map to number of dots and number of
dots/box, respectively.

Although straightforward conceptual combination plays a role in
these learning episodes (in the formulation of the placeholder structures),
the heart of Quinian bootstrapping is the process of providing meaning
for the placeholder structures. At the outset, both “heavy object” and
“heavy substance” are interpreted in terms of the child’s undifferentiated
concept degree of heaviness (see chapter 10). It is in terms of the undif-
ferentiated concept of degree of heaviness that the child represents the
empirical generalizations that constitute the phenomena she is attempting
to model. The placeholder structure introduces new mental symbols
(weight and density). The modeling processes, the thought experiments,
and the analogical mapping processes provide content for them. The
modeling process, using multiple iterations of mappings between the
mathematical structures and the physical phenomena, makes explicit in a
common representation what was only implicit in one or the other
representational systems being adjusted to each other during the map-
ping. In Smith’s most successful version of this bootstrapping process, the
students first map weight and volume to number, and then use the dots
per box models to represent a variety of physical phenomena, formu-
lating an explicit concept of density and thus completing the differenti-
ation of weight from density.

That bootstrapping processes with the same structure play a role in
conceptual change among both adult scientists and young children is
another fruit of cognitive historical analysis. As I have mentioned many
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times—a point bearing further repetition—this does not belie important
differences between adult scientists engaged with meta-conceptual
awareness in explicit theory construction and young children. Without
denying these differences, chapters 8 through 11 illustrate what the
theory-theory of conceptual development buys us. By isolating questions
that receive the same answers in each case, we can study conceptual
discontinuities and the learning mechanisms that underlie them, bringing
hard-won lessons from each literature to bear on the other.

Conclusions. The Theory-Theory of Conceptual
Development

The term “theory-theory” has many uses in cognitive science: some
cognitive scientists speak of a theory-theory of conceptual development
(as opposed to modular or maturational theories), and some of a theory-
theory of concepts (as opposed to prototype or exemplar or information
semantics theories), and some of the theory-theory of mentalizing (as
opposed to modular or simulation theories). These are independent uses,
which are confusing given the common designation of “theory-theory.”
The work reviewed in this chapter bears on the theory-theory of con-
ceptual development; I will touch on the theory-theory of concepts in
chapter 13. As I hope is clear, I endorse the theory-theory of conceptual
development, although I do not believe that core cognition is in its
domain. I believe in the existence and importance of framework theories,
as these provide explanatory fodder, constrain inductive learning, and
otherwise structure thought. Therefore, accounting for their acquisition is
a central goal of cognitive development. The theory-theory holds that
intuitive framework theories are similar to meta-conceptually held
scientific theories in many respects, including important aspects of the
mechanisms through which they are constructed. Engaging in cognitive-
historical analyses of theory change, juxtaposing analyses of theory change
in both historical and ontogenetic contexts, constitutes one way of
making the theory-theory of conceptual development bear fruit.

The theory-theory of conceptual development is not actually a
theory; it is way too underspecified. One way to see what it comes to is to
consider the alternatives. The theory-theory is often contrasted with
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modular views, or with maturational accounts of the mechanisms
underlying conceptual development. I agree with this abstract charac-
terization of the theory-theory, but note that endorsing it does not
require denying modular views, nor denying that maturational processes
also play a role in conceptual development. The systems of core cogni-
tion fall under the umbrella of modular views, and it would be
foolhardy to deny that maturation of executive function, for example,
plays an important role in conceptual development. These positions are
not competitors for understanding conceptual development unless each is
posited to be the sole source of our conceptual repertoire and or the sole
process driving developmental change. Clearly, there are many types of
conceptual representations and many processes that underlie conceptual
development. The contrast between those that articulate systems of core
cognition, on the one hand, and those articulating explicit mathematical
knowledge and explicit intuitive theories, on the other, has been central
to the picture of conceptual development developed in these pages.
Only the latter are in the domain of the theory-theory of conceptual
development.

The theory-theory and modular views of knowledge acquisition
may become competitors in any given case. Are the 4-year-old’s repre-
sentations of want-belief psychological causation the output of a Quinian
bootstrapping process, or are they continuous with a system of core
cognition, as Leslie and Fodor (chapter 5)? These are competing posi-
tions. Engaging these issues in each case requires subtle empirical and
theoretical work, but it is important to recognize that even if we con-
verge on an answer in any given case, we are not licensed to conclude
that all cases of conceptual development will receive that same answer. I
believe that systems of core cognition, as characterized in chapters 3

through 5, exist, and intuitive theories undoubtedly do. We distort our
picture of conceptual development by adopting a one-size-fits-all stance
toward the nature of and acquisition of systems of mental representation.

But what positive theses does the theory-theory of conceptual
development commit us to? Sometimes it is taken to mean that
knowledge acquisition is an evidence-driven process. Of course, this
claim is only as interesting as what we have to say about evidence-driven
processes is interesting. In recent years this work has become very
interesting, indeed. Bayes-net representations of causal structure,
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together with Bayesian and other models of causal learning, have greatly
enriched the study of causal cognition. Given the centrality of causal
representations to theories, this work certainly has a lot to say about
theory acquisition. It already has had a lot to say about hypothesis testing,
theory choice, and causal learning. Here, I have taken an alternative,
complementary approach to the question of theory acquisition. I have
sought to understand where the representations that articulate the
hypothesis space come from.

The positive thesis I have defended in these pages is that distin-
guishing theory changes that involve conceptual change from those that
do not is as central to understanding individual conceptual development
as it is to understanding theory acquisition in historical time. Conceptual
change constitutes a form of genuine developmental discontinuity and
thus poses a very difficult explanatory challenge. My answer to this
challenge has been to flesh out Quine’s bootstrapping metaphors,
showing how these play a role in the acquisition of both intuitive theories
during childhood and explicit theories during the history of science. Even
within the theory-theory of conceptual development, within our
accounts of evidence-based rational learning processes, there is room for
quite different types of learning mechanisms. Endorsing the theory-
theory, and choosing to work within it, is a commitment that under-
standing these different types of learning mechanisms will allow us to
learn what it is we want to know about conceptual development. In my
case, what I want to know is: How does the human capacity arise to think
thoughts formulated in terms of concepts like gene and atom? The theory-
theory gives us one type of purchase on this question. So, too, does the
theory of core cognition.
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13
Conclusion II: Implications for a Theory of
Concepts

The previous chapters have sketched a theory of the origin of concepts.
Building a theory of concept acquisition and a theory of concepts that fits
with it is a single project. In this concluding chapter I ask you to accept,
for the moment, my account of concept acquisition and consider where
it leads in terms of a theory of concepts.

Beginning Assumptions

Concepts are mental symbols, and so a theory of concepts is part of a
representational theory of mind. At least in principle, the theory must fit
into a picture of what makes mental symbols represent—that is, what
connects mental representations to the entities they refer to. It must also
fit into a picture of how concepts function in thought. Mental repre-
sentations enter into a variety of computational processes. They play a
role in the inferences we draw, the predictions we make, and the
explanations we build, so a theory of them must fit into an account of
how it is they function. Finally, because concepts are merely a subset of
all mental representations, the analysis must fit into an account of how to
distinguish conceptual representations from nonconceptual ones.

First, some terminology. “Reference” is a relation between a symbol
(e.g., the word “dog” or the concept dog) and the entities it symbolizes
(i.e., Rover, Lassie, and the like); the referents of a symbol are the entities
in the world it represents. “Conceptual content” is a philosopher’s term
of art that I will not try to explain here. My only claim is that the content
of a concept is what it contributes to the meaning of the thought in
which it figures. For example, the concept dog contributes to the
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meaning of the thought John owns a vicious dog. As I use the term,
“content” is roughly synonymous with “meaning.” Of course, different
theories of concepts give different answers to the question of what
determines the content of a concept, what the relations are between
content and reference, and how concepts are to be individuated—what
determines whether two symbols express the same concept or different
ones. To explore how the theory of concept acquisition offered in these
pages bears on adjudicating among theories of concepts, we need a better
picture of the players. Therefore, I begin by providing a map, in very
broad strokes indeed, of the lay of the land.

To get my work off the ground, I assumed that two types of pro-
cesses figure in a theory of all mental representations, including con-
ceptual ones: (1) causal processes that mediate between entities in the
world and mental representations, at least partially determining what
mental symbols refer to; and (2) internal computational processes defined
over mental representations that explain their role in thought. The latter
constitute what is called “conceptual role” or “inferential role.”

Some have argued that conceptual role has three parts to play in a full
account of concepts: a part in determining reference, a part in deter-
mining conceptual content, and, as its primary function, a part in
determining the concept’s contribution to thought. So far, separating the
work of conceptual role into these distinct functions has not mattered.
Rather, I have appealed to conceptual role as part of my evidence of
which concepts monkeys, infants, and young children have. For example,
that infants and monkeys use analog magnitude representations to sup-
port addition and the calculation of ratios provides evidence that these are
number representations (chapter 4). Or, for another example, the ways
that infants take into account the causally relevant properties of the
participants in events in their representation of these events provides
evidence that they are making causal attributions (chapter 6). Using
inferential role in this way is surely justified, given the work concepts do
in the computational processes that are thought, no matter what work
conceptual role does in concept individuation and content determina-
tion. But for present purposes, specifying how, if at all, conceptual
role plays a part in content determination matters very much, for it
separates many philosophical theories of concepts (e.g., Dretske, 1981;
Fodor, 1998; Kripke, 1972/1980; Putnam; 1975) from most theories
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psychologists and linguists are drawn to (e.g., Smith & Medin, 1981;
Murphy, 2002).

What Phenomena a Theory of Concepts Is Responsible for

Many apparent disagreements about the nature of concepts are really
disagreements about the central phenomena that will constrain a theory
of them. Whenever I teach a class on concepts, I begin by asking students
to say what phenomena—what data—a theory of concepts must be
responsible for. The psychology students usually come up with three
types: (1) data concerning categorization behavior, including the well-
attested effects of prototypicality on ease of categorization; (2) data
concerning inferential role; and (3) data concerning concept acquisition.
Sometimes they also mention the phenomenon of conceptual combi-
nation—if concepts are the units of thought, the elements of beliefs, then
a theory of concepts must be able to account for the construction of
beliefs from concepts and for the productivity of thought.

The philosophy students, like the psychologists, also are concerned
with understanding how concepts serve the productivity of thought and
the role that concepts play in inference. But what always strikes me from
this exercise is that psychology students almost never mention the phe-
nomena that philosophers often take as the central challenges to a theory
of concepts: (1) accounting for reference; (2) distinguishing concepts of
entities in the world from beliefs about those entities (sometimes called
distinguishing concepts from conceptions [e.g., Rey, 1983]); and (3)
accounting for epistemological warrant. What role does a theory of
concepts play in understanding the justification of belief? Analyticity
(truth by virtue of meaning) is central to the epistemological project. If
there are thoughts that are true in virtue of the concepts that compose
them, a theory of concepts should allow us to understand why.

The second of these concerns, distinguishing concepts from beliefs
(or distinguishing concepts from conceptions), bears further comment.
On some theories of conceptual content, such as holistic versions infer-
ential role semantics, everything we believe about the entities in a
concept’s extension contributes to the meaning of that concept. These
theories have undesirable consequences (to say the least; see Fodor &
Lepore, 1992). To mention just one obvious one, consider the intuition
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that I can disagree with people whose knowledge of tigers is vastly dif-
ferent from mine, including my past selves. You and I might disagree on
whether wild tigers are to be found in China, for example, or on whether
there are white tigers. If I now say that some tigers are white, how can I
be disagreeing with myself of 10 years ago, when I thought all tigers were
orange with dark stripes (or with you, if you believe the same)? If you
share the intuition that people can disagree, then it cannot be that all of
our beliefs play an essential role in determining content; if they did, we’d
be talking past each other, meaning different things by both “tiger” and
“white,” rather than disagreeing about a given proposition (namely, that I
take “tigers are white” to be true whereas you take it to be false). The
challenge for a theory of concepts, then, becomes determining what, if
not one’s beliefs about the entities in the extension of a concept, does
determine the concept’s content.

In chapters 8 to 11, I argued that conceptual change is a real (indeed,
common) phenomenon, so I am committed to the possibility that you
and I might have different concepts (of matter, of weight, of heat, of
number . . . ). Any developmental psychologist, anthropologist, or intel-
lectual historian who seeks to understand the historical development of
concepts faces two urgent problems of concept individuation. When I say
that you and I have different concepts of weight, there must be some way
of picking out mental representations with enough overlap that they both
express some concept we would both agree are candidates for being the
same concept. And then, we must say why, nonetheless, these repre-
sentations express different concepts. For example, one concept is really
weight and the other is an undifferentiated weight/density concept. That is,
I accept the urgency of distinguishing conceptual change from belief
revision. In some cases of knowledge acquisition we merely change our
beliefs about the world; in others we change the concepts in terms of
which those beliefs are composed. If the arguments in chapters 8 through
11 are correct, then our theory of concepts had better allow us to dis-
tinguish concepts from beliefs, and concepts from conceptions.

The first phenomenon on a psychologist’s list—categorization
behavior—often does not even make it onto a philosopher’s list at all.
Philosophers do not deny the interest of the scientific project of
understanding what leads to categorization decisions. These decisions are
likely to draw upon all of what one knows about the entities one is
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categorizing, one’s conceptions of and beliefs about those entities, as well
as the concepts themselves, plus quick and dirty recognition routines
developed to exploit statistically diagnostic and readily available evidence;
and it is a wonderful project to figure out how this works. But under-
standing categorization behavior is unlikely to give us much purchase on
the rest of the work we’d like a theory of concepts to do for us.

The list of phenomena that includes both the philosophers’ and the
psychologists’ desiderata seems a good place to start as we think about a
theory of concepts; and, indeed, the first worked-out theory of concepts
—that of the British empiricists—sought to account for the whole set.
There is no way of saying at the outset of theory building which phe-
nomena will turn out to be in the domain of a worked-out theory. One
way of looking at the history of the field, both within psychology and
within philosophy, is that the search for a single theory of concepts that
handles all of these phenomena has been fruitless. Still, as we review some
of the moves that have been made, we should keep firmly in mind which
phenomena are motivating them and which phenomena have been
abandoned, at least for the moment, as we try to provide an explanatory
account of the nature of concepts and how they function in mental life.

The Empiricists’ Theory

For good reasons, discussions of concepts often begin with the British
empiricists’ theory. The empiricists’ theory was extremely influential,
directly impacting later philosophical work (e.g., the logical positivists of
the Vienna circle [e.g., Carnap, 1932/1980] and the reactions against
them, [e.g., Quine, 1953/1980; Wittgenstein, 1953/1958; Putnam, 1962;
Kripke, 1972/1980]), as well as directly impacting the first systematic
psychological work on concepts (e.g.., Vygotsky, 1934/1962; Bruner,
Goodnow, & Austin, 1956). Creating the first important worked-out
theory of concepts, the empiricists attempted to account for the whole
range of both the psychologists’ and the philosophers’ phenomena listed
above. Important for my project, the empiricists took concept acquisition
to be an important source of constraint in theorizing about the nature of
human concepts.

The philosophers Steven Laurence and Eric Margolis (1999) provide
an excellent and psychology-friendly exposition of the empiricist theory
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of concepts. In the psychological literature, the empiricist’s theory is often
called “the classical view” (e.g., Smith & Medin, 1981), although the
aspect of the theory taken up by psychologists under this designation (the
central role of definitions in the analysis of concepts) is only part of the
empricists’ views. My account captures what I understand to be the
common ground among quite different theorists, and it also modernizes
some of the discussion. For example, the empiricists knew no mechan-
isms of conceptual combination other than association; I assume the
machinery of logic and syntax as underlying conceptual combination.

The empiricists divided concepts into primitive concepts and com-
plex ones, and they took the primitive concepts to be primitive in three
different respects: developmentally primitive (they are the output of
innate input analyzers), definitionally primitive (all other concepts are
defined in terms of them), and interpretationally primitive (they are
intrinsically meaningful, and all understanding requires unpacking
complex concepts into the primitives from which they are comprised).
Notice, these senses of primitive are actually quite different. On some
modern versions of the classical view, the primitives from which defi-
nitions are built are not plausibly innate (e.g., the chemist’s element, atom,
or charge might be primitives in modern chemistry, figuring in definitions
of other terms, but they are unlikely to be the output of innate input
analyzers). Similarly, concepts might be interpreted without decompo-
sition into other concepts, even if they could be defined in terms of some
primitive vocabulary. The empricists’ primitives were primitive in all
three senses. According to the empiricists’ theory, complex concepts have
primitive concepts as their constituents. Necessary and sufficient condi-
tions for falling under a complex concept are stated in terms of primitive
ones. Concepts and conceptions were easily distinguished: the definition
specifies the concept; all other knowledge and beliefs about the entities in
a concept’s extension constitute the conception of those entities. People
can share concepts in the face of widely different conceptions of and
beliefs about the entities the concepts represent.

It was important part of the empiricists’ theory that they took the
primitive concepts to be sensory. They assumed that sensory repre-
sentations are the output of innate sense organs, and that sensation
provides causal connections between entities in the world and our
representations of them. For example, the physics of light and the way
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that vision works guarantees that the representation round applies to
round things. Similarly, the chemistry of salt and the physics and neural
structure of taste representations ensure that salty taste applies to substances
with salt in them. Thus, the empiricists provided something a bit like an
information semantics for primitive concepts. It was also important to
their project that all complex concepts are defined from primitives. They
could thus account for the acquisition of all concepts: any given concept
is either primitive, and thus innate, or composed from primitives. That
primitive concepts are putatively sensory, and that complex concepts are
putatively composed from primitives, also provides an account for how
complex concepts refer. Complex concepts are causally connected to the
entities they refer to because the primitives from which they are com-
posed are.

The empiricists’ view of how reference works is straightforward.
Concepts (mental representations) determine their extensions in the world.
Primitives refer directly: the entities that fall under a primitive concept are
those that cause it to be activated in specifiable ideal circumstances. The
entities that fall under a complex concept are those that satisfy the def-
inition. This view led to a natural model of the categorization process; to
decide whether a given entity is, for example, a cup, simply check
whether it satisfies the definition of a cup, the necessary and sufficient
conditions for being a cup.

Especially as developed by the logical positivists, these ideas were put
to work in epistemology—the problem of justifying that our beliefs
are true. How can we know that electrons have negative charge, that
Tyrannosaurus rex once walked the earth, or that the universe is
expanding? The logical positivists expanded the representations that
ground cognition from sense data to include directly measurable prop-
erties of the world. According to their view, some knowledge (contin-
gent knowledge) is justified by the logic of statistical warrant. The rest is
warranted from the nature of concepts themselves. If sense data and the
outputs of measurement devices ground our knowledge, and all other
concepts are defined in terms of them, then epistemological warrant
owing to our conceptual apparatus (as opposed to our contingent
knowledge) has two components: (1) sense data and measurements are
causally connected to the world, and (2) much other knowledge is
analytic—true by definition. We know that bachelors are unmarried
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because this is part of what the word “bachelor” means. That is,
“bachelor”means unmarried man.We have stipulated that in our language
and thus the knowledge that bachelors are unmarried is justified con-
ceptually. Similarly, “mass” and “acceleration” are primitives (we can
directly measure them). We know that force is proportional to mass
because “f ¼ ma” is true by definition—this is what we have stipulated
that the word “force” means—that physical magnitude obtained by
multiplying mass by acceleration. The logical positivists held that it is not
a discovery that f ¼ ma (we have no independent concept of force
because it is not directly measurable). Only if force is a primitive or
definable in terms of primitives other than mass and acceleration can the
fact that it equals mass times acceleration be a belief that is formed by
empirical discovery. Rather, the positivists held, we define it so, and then
explore how the physics works out.

The empiricists’ theory could accommodate all of the other phe-
nomena on our list as well. The problem of disagreement is solved by
definitional structure. Primitive concepts are shared because innate input
analyzers are common to all human beings, and as long as the correct
definition for any complex concept is known, complex concepts are shared
across time and among people. The productivity of thought is explained in
terms of the processes that build complex concepts from primitive ones,
including syntactically complex ones such as “brown cow” or “graduate
student in psychology.”Each constituent in such a phrase is either primitive
or defined in terms of primitives, and syntax provides rules for building the
meaning of the phrase from the meaning of the constituents. For example
“black cat” refers to the intersection of black entities and cats.

As I said, the empiricists’ theory was grand in scope. It provided a
unified theory of concepts that accounted for reference, conceptual
productivity, epistemological warrant, the inferences concepts support,
categorization, conceptual stability and the possibility of disagreement,
and acquisition. Of course, cognitive science has abandoned the theory as
hopeless, and for good reason. But as we contemplate what has led to the
abandonment of this grand theory, looking at the alternatives that have
been offered, we need to keep the phenomena the empiricists’ theory
was responsible for in mind. Different theoretical perspectives will gen-
erally have a different idea of exactly which are the important phe-
nomena to explain, but these must be argued for, and not merely
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assumed, and a justification given for which phenomena have been
abandoned as belonging in the domain of any given theory.

The Psychologists’ Response

This book is in part a response to the empiricists’ theory of concept
acquisition. The empiricists, as well as later thinkers like Quine and
Piaget, had a theory about the developmental primitives from which all
concepts are built—that they are perceptual, sensory, or sensori-motor.
Chapters 2 to 7 of this book offered evidence that these writers mis-
characterized the stock of original representational primitives. And
chapters 8 to 11 offered a decidedly non-empiricist theory of how new
concepts are acquired: certainly that they are not always learned by
constructing definitions in terms of the stock of developmental primi-
tives.

Two important books, one by Edward Smith and Douglas Medin
(1981), and, more recently, one by Gregory Murphy (2002), summarize
the psychological response to the empiricists’ theory (the classical view).
For the most part, the literature synthesized in these reviews was not
concerned with the empiricist theory of concept acquisition. Psycho-
logists working within or writing against the classical view did not consider
the question of what the developmental primitives are, and therefore
never endorsed or criticized the idea that all concepts can be defined in
terms of sensory primitives. Rather, they were concerned with the
structural claims about mental representations: that complex concepts are
defined in terms of definitional and interpretive primitives, whatever
these may be.

Some of the first experiments that undermined the classical view
concerned the existence of definitional primitives that were also inter-
pretative primitives. This work addressed the claim that comprehension
of words requires recovering the primitives out of which they are built. If
this is so, then there should be a processing cost of lexical complexity—
that is, complex concepts should take longer to process than concepts that
express their definitional components. Two laboratories in the 1970s,
Walter Kintsch’s and Jerry Fodor’s/Merrill Garrett’s, sought such evi-
dence and failed to find any. In all of these studies, the techniques were
shown to be sensitive to other linguistic expressions of formally identical
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complexity differences, when these did not rest on putative definitions.
For example, negatives marked on the surface (“unmarried” or “not
married”) increased processing time in an inference task, whereas these
same negatives, when supposedly part of a definition, as in “bachelor,”
did not (Fodor, Fodor, & Garrett, 1975; Fodor, Garrett, Walker, &
Parkes, 1980; Kintsch, 1974).

One response to these studies was that concepts may be definitionally
complex and yet not be decomposed during comprehension. Primitives
may be definitional primitives without being interpretational primitives.
The content of a concept could conceivably be captured by its definition
in terms of primitives, even if in language these definitions have been
compiled into units that subserve comprehension without decomposi-
tion.

The major attack on the classical view, however, concerned its theory
of categorization.Without doubt, since concepts became a topic of study in
psychological theories in the 1950s (e.g., Bruner, Goodnow, & Austin,
1956), categorization behavior has been the central phenomenon psy-
chologists have sought to explain. Psychological research has decisively
confirmed Ludwig Wittgenstein’s claims that family resemblance structure,
rather than a definitional structure that provides necessary and sufficient
conditions for category membership, underlies categorization judgments.
The psychologist Eleanor Rosch (1973, 1978; Rosch & Mervis, 1975)
discovered that categorization decisions concerning a wide variety of
concepts, from putative primitives such as red, to animal concepts, vehicle
concepts, tool concepts, furniture concepts, and so on, reveal a prototype
structure. Subjects find it natural to judge whether German shepherds are
better exemplars of the concept dog than are Pekinese, and the ratings of
exemplar goodness predict many details of the data from experiments on
categorization. Subjects are faster to judge good exemplars to be category
members than they are poor exemplars, children learn to recognize good
exemplars before they recognize poor exemplars, and so on. Furthermore,
when asked to list properties of instances of a category such as dogs, the
properties listed of prototypical dogs overlap most of those listed of all dogs,
and the properties listed of atypical dogs overlap least. Artificial-category
learning experiments show that people can learn categories characterized
probabilistically in terms of a primitive base specified by the experimenter,
and that categorization reflects the typicality structure so created. The
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existence of prototypicality structure and its importance in the process of
categorization are absolutely beyond doubt.

These phenomena led psychologists to adopt a theory of what
concepts are that fits the categorization behavior. In particular, they have
denied that categorization is a process of checking whether some entity
satisfies the necessary and sufficient conditions for category membership.
Rather, it was suggested that categorization reflects the probabilistic
structure of concepts. According to the first theories that were developed
in response to the classical view, a category is mentally represented by a
set of features that members typically have, and categorization is deter-
mined by whether a given entity shares enough of those features (Rosch,
1978; see Smith & Medin, 1981, for an overview). As Murphy (2002)
reviews, much of the subsequent controversy in the field has concerned
adjudicating between prototype theories, in which a single summary
representation encodes the features that probabilistically determine
categorization judgments, on the one hand; and exemplar theories, in
which particular category members are represented in terms of their
features, and candidate category members evaluated in terms of their
similarity to stored exemplars, on the other. For present purposes, the
differences between these two classes of models need not concern us.

There is no doubt that prototype/exemplar theories account for a
great deal of data from categorization experiments, and thus provide
insight into the process of categorization (see below for caveats). How-
ever, they are not intended to account for most of the phenomena the
empiricist theory covered. As already mentioned, they do not really take
on the problem of concept acquisition, as there is no account of the
origin of the features interms of which the prototypes or exemplars are
specified. The features that enter into prototype or exemplar repre-
sentations in psychological experiments (e.g., has a beak, has wings, flies)
are not plausibly developmental primitives. These theories also make a
mystery of shared concepts, failing to address the problem of disagree-
ment: my prototype of a dog (or the dog exemplars I represent) must be
different from yours, yet we both have concepts of dogs. We can agree
that there are many species of dogs and disagree about whether wolves
are a kind of dog. Relatedly, these theories offer no machinery to dis-
tinguish conceptual change from belief revision. Basically, “knowledge
about dogs” and “concept of dogs” are treated as one and the same thing.
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Indeed, one friendly amendment to prototype and exemplar theories
—what Murphy (2002) calls the “knowledge view” of categorization—
holds that all of one’s knowledge of entities, especially causal/explanatory
knowledge, is deployed in categorization. Murphy endorses the
knowledge view and I believe that he is right; we do have summary
representations of categories of entities, we do represent specific exam-
plars, and categorization draws on these as well as anything else we know
about the entities to be categorized. Categorization is a kind of confir-
mation, and as Quine argued, confirmation is a holistic process. But that’s
exactly what should make categorization not the central phenomenon in
a theory of concepts. Concepts are the units of thought—the building
blocks of knowledge. If we use everything we know about dogs in
categorizing an entity as a dog or a nondog, and if we take a theory of
categorization to be a theory of conceptual representations, we cannot
isolate the contribution of our concept of dogs to our ability to think and
learn about dogs. The knowledge view explicitly denies the distinction
between concepts and conceptions. As the philosophers Jerry Fodor and
Ernie LePore (1992) argue in their passionate discussion of holistic the-
ories of concepts, being forced by our data and theoretical commitments
to this position is a cause for despair, not one to celebrate. As will become
clear, Murphy’s knowledge view is closely aligned with the theory-
theory of concepts, and I shall argue for its place in a theory of concepts,
while not giving up on distinguishing concepts from conceptions, belief
revision from conceptual change.

Notice that whether one takes any possible objection to a given
theory of concepts seriously depends upon one’s own theory of concepts.
Many embrace a holistic view of concepts and accept that concepts will
therefore never be fully shared. If one identifies conceptual content with
the output of categorization behavior, then one must accept that concepts
are not completely shared (because people certainly disagree in their
categorization judgments). As I wander through this conceptual land-
scape I do not lay out the answers holders of each view might give to an
objection I am voicing. Rather, my point is that it is important to rec-
ognize the compromises our theories force on us. One’s favored theory
often requires abandoning some phenomenon that there is good reason
to believe should be in the domain of a theory of concepts.
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Some early responses to the demonstrations of prototypicality
structure attempted to salvage the classical view. Sharon Armstrong, Lila
Gleitman, and Henry Gleitman (1983) showed that the data revealing
prototypicality structure in category decisions do not transparently reflect
the nature of the concepts into which entities are being categorized.
Prototypicality phenomena are observed in categorization decisions
about what entities fall under clearly definitional concepts, such as odd
number. Participants in their studies agreed upon a typicality structure for
odd numbers (7 is a better example of an odd number than is 1 or 9 or
319), and the typicality structure predicted speed and accuracy of cate-
gorization decisions. But almost nobody would seriously think that our
concept odd number is anything other than integer not divisible by 2, unless
he or she were committed to denying utterly the distinction between
concepts and conceptions, between content determining and merely
associated representations. Participants could offer this definition, and
their categorization decisions in the end reflected it. One initial response
to these data was to posit a two-part structure to concepts: a classical core
that determines conceptual content, as on the empiricists’ theory, and a
peripheral fast-and-dirty recognition routine that reflects all of our
knowledge about odd numbers, our conceptions of them as well as of
even numbers, prime numbers, and so on. This response missed the
mark; these data do not show that all concepts have a definitional
structure. Rather, they drive home the point that that data from cate-
gorization experiments that reflect prototypicality are not a pipeline to
the nature of concepts (see also Diesendruck & Gelman, 1999, for evi-
dence that considered categorization decisions dissociate from proto-
typicality judgments).

Psychological Essentialism and the Theory-Theory of Concepts

Even more damaging to the classical view, and to the prototype/
exemplar view of concepts as well, are the many studies that show that
we humans make some categorization decisions—those involving natural
kind concepts—against an assumption of essentialism; that is, we assume
that what makes an entity a dog is that it has the essential features of a dog,
even though we might not know what those features are! See Gelman
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(2003) for an extended defense of psychological essentialism. If we don’t
know what those features are, then categorization decisions cannot be
made by checking whether an entity has those features, either in con-
sidered categorization or in fast-and-dirty categorization. If unknown,
they are not represented and therefore cannot provide any criterion for
category membership—neither definitional as on the classical theory nor
probabilistic as on the prototype/exemplar theory.

Frank Keil (1989) provided the first empirical evidence for psycho-
logical essentialism. Keil’s data also bring home the point that categori-
zation decisions do not merely involve comparing the features of an
entity to the stored features of a prototype. Participants in Keil’s studies
were shown pictures such as those in Figure 13.1a and asked what they
depicted. Not astonishingly, they answered, “a raccoon.” Keil then
described a transformation of that animal involving plastic surgery and fur
dyeing, implantation of a sac of smelly stuff, and behavior modification,
so that the resulting animal looked like that in Figure 13.1b. Not only did
it look like a skunk, it had all of the known behavioral features of skunks.
That is, it matched people’s prototypes of skunks exactly. Yet adults (and
children starting around age 7) claimed that the animal in Figure 13.1b is a
raccoon.

What makes an animal a skunk or a raccoon are not the properties that
one ordinarily relies upon in classification tasks, nor the properties that
account for the prototypicality structure of animals in feature listing
experiments, nor similarity to stored exemplars of skunks and raccoons,
but, rather, something deeper, something essential, something inherited
from a creature’s parents. We need not know what this essential property

Raccon/Skunk

A B

Figure 13.1. (From Keil, 1989). Keil, F. C. (1989). Concepts, kinds, and cognitive
development. Cambridge, MA: MIT Press. Reprinted with permission.
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is. (Something to do with DNA is our current best guess, but even
biologists do not yet know exactly what it is about DNA that distinguishes
skunks from raccoons.) Psychological essentialism reflects our assumptions
about natural kinds, showing that we deploy our concepts of them in the
absence of knowledge that would allow us to categorize entities under
them. Notice that this characterization of psychological essentialism does
not commit us to the claim that conceptual representations of kinds
include placeholder symbols for the unknown essence (see Strevens,
2000). Rather, the claim is that our kind concepts are deployed against an
assumption that what determines the entities of a given kind is a meta-
physical question (something in the world, not in our minds), and that the
current information we use to decide this matter is always up for revision.

The literature on psychological essentialism shows that natural kind
concepts are deployed in a manner consistent with the following
assumptions: (1) there are causally deep properties that explain a given
entity’s existence, kind, and superficial properties; (2) these causally deep
properties are thus more important in interpreting what kind an entity
falls under than superficial observable properties; and (3) this is so even if
we do not know what those causally deep properties are. There are two
crucial components of these assumptions that contradict the classical
view. First, an entity’s deepest properties, those that determine its kind,
are not definitions. Rather than being stipulated by linguistic convention,
they must be discovered. Second, our concepts are deployed against an
assumption that our current beliefs about an entity’s deepest properties,
those that determine its kind, are revisable. They do not provide nec-
essary and sufficient conditions for category membership. These repre-
sentational assumptions are consistent with prototype/exemplar theories,
but psychological essentialism also opposes those theories. Some of the
tenets of psychological essentialism—such as the differential weighting of
causally deep features in categorization decisions—can be seen as addi-
tions to prototype/exemplar views, friendly amendments as it were. But
others, that there must be some mechanism of reference fixing that is
independent of any of the known properties of the referents of the
concept (unknown essential features), deeply undermine prototype/
exemplar theories just as they undermine the classical view.

Psychological essentialism is closely aligned with Murphy’s (2002)
knowledge view of concepts, as well as with what some psychologists
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have called the “theory-theory” of concepts. Different theory-theorists
mean rather different things by the term. I have been arguing for many
years for one version of the theory-theory—namely, that many everyday
concepts are terms in intuitive theories, and thus that whatever mecha-
nism determines the content of the terms in scientific theories may also
determine the content of these everyday concepts (e.g., Carey 1985b;
1991). Of course, this gets us nowhere toward an analysis of concepts
without a specification of how the content of theoretical terms is
determined. Others invoke the theory-theory to emphasize that the
aspect of knowledge of entities that is particularly important in catego-
rization decisions is causal and explanatory—just that type of knowledge
embedded in intuitive theories.

One central tenet of the theory-theory is that conceptual role at least
partly determines the content of concepts. Especially important is the role
of each concept in the causal explanatory structure of the theory. Most
psychologists (and philosophers criticizing the theory-theory) assume that
the theory-theory is committed to the internal inferential role completely
specifying content. I dub this the “internalist theory-theory,” and, as I lay
out below, I do not endorse it. Indeed, it is inconsistent with the evi-
dence from the literature on psychological essentialism, which shows that
people often deploy concepts assuming that they do not represent the
features that determine which entities fall under them. But before
sketching the particular version of the theory-theory I endorse, and
showing how it is related to the theory of concept acquisition I have
developed in these pages, I turn to the philosophical response to the
empiricist theory, part of which was the historical source of the doctrine
of psychological essentialism, and hence the theory-theory.

The Philosophers’ Response

Even sketching the philosophical response to the empiricists’ view of
concepts is vastly beyond the scope of this book. Every part of the view
has come under philosophical attack. Here I concentrate on two threads
of the criticisms: those with the greatest impact on the psychological
literature on concepts, the Kripke/Putnam arguments that the processes
through which reference is determined are not mental, and Fodor’s
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arguments for conceptual atomism and radical concept nativism. I con-
clude with Ned Block’s vision of a dual factor theory of the determinants
of conceptual content.

Wide Content and Information Semantics

Kripke (1972/1980) and Putnam (1975) took reference to be the central
phenomenon that a theory of meaning must account for. What deter-
mines the entities in the world that a given term in language (or concept
expressed by that term) picks out? Their radical denial of the classical
view (and also prototype, exemplar, and internalist theory-theory views)
is summed up by the statement, “Meanings are not in the head.” By this,
Putnammeant that whatever mental representations, considered as purely
internal, support our use of a term do not also determine its content.
Intensions construed as purely internal do not determine extensions, at
least not for proper names or for natural kind concepts like dog or gold
or star. Kripke and Putnam deny that what we know about the entities
picked out by a concept or term determines which entities those are,
so long as that knowledge is thought of purely internally. In what
follows, it’s important to focus on two quite separate aspects of the
Kripke-Putnam argument. Most of what follows focuses on one strand
of the argument: the reasons philosophers find the dictum that meanings
are not in the head at least plausible. I also briefly discuss the other strand:
their positive proposal for how meanings are determined.

The philosophical thought that culminated in Kripke’s and Putnam’s
work began with arguments against the existence of analytic truths
involving names, natural kinds, and terms in theories. According to the
classical view, analytic truths are true in virtue of meaning and are also a
priori. That is, our knowledge of analytic truths is not empirical. For
example, it is analytically true that all bachelors are unmarried, because
the relation between being a bachelor and being unmarried is a matter of
linguistic convention, therefore immune to reconsideration on any
empirical grounds. Similarly, mathematical and scientific definitions, such
as that of kinetic energy for Newtonians (e ¼ 1/2 mv2) were held to be
linguistic conventions and thus a priori true. Mass and velocity are
primitive concepts, according to the logical positivists, as they are the
output of measurement devices. We stipulate kinetic energy to be 1/2
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mv2 and then proceed to study kinetic energy empirically. Quine (1953/
1980) and Putnam (1962) countered that this generalization was not a
matter of linguistic convention and only seemed a priori because of the
central role its truth played in an entire conceptual system. It was not only
revisable; since Einstein, it has been revised. Quine and Putnam concluded
that there are no nontautological analytic truths involving theoretical
terms of science.

Consider our concept tiger. There is no definition of the concept (in
sensory vocabulary or in any vocabulary) that provides analytically nec-
essary and sufficient conditions for being a tiger, so knowledge of a
definition cannot determine the extension of tiger. Putnam argues that
neither similarity to our prototype of tigers (or to stored representations
of tiger exemplars), nor our knowledge of or theory of tigers determines
what our concept tiger refers to. What then does determine the extension
of the concept tiger and, derivatively, the reference of the word tiger?
Kripke and Putnam provide a two-part answer. First, what makes
something a tiger inheres in tigers themselves, not in our concepts of
tigers. Second, causal connections between tigers and our representations
of them are involved in the determination of reference of natural kind
terms.

What makes an entity a tiger is a metaphysical question, not a psy-
chological one. In this respect, the Putnam-Kripke analysis dovetails with
psychological essentialism, and indeed, historically was one of its sources.
The philosophical analysis justifies psychological essentialism: what makes
a tiger a tiger is a fact about the world, not a fact about our beliefs,
knowledge, or mental representations of tigers. It is not a matter for
definitional stipulation, and this is one way the classical view went wrong.

Kripke’s analysis of proper names such as “George Washington”
gives a feeling for the arguments that reference is not determined by what
we know about the entities picked out by our concepts. Consider how
the classical or prototype theories would explain how the referent of
“George Washington” is determined. In the classical view, the meaning
would be a set of descriptors that provide necessary and sufficient con-
ditions for being George Washington (was a person, was male, was the first
president of the United States, was the general at the head of the Revolutionary
Army during the War of Independence, was married to a person named Martha,
and so on). The unique entity that satisfies these descriptions is George
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himself. In the prototype view, these descriptors would merely proba-
bilistically determine the referent—the person who best satisfies most of
these descriptors is George himself.

Kripke (1972/1980) appealed to straightforward and compelling
intuitions in his rejection of these mechanisms for reference determina-
tion. He pointed out that many of the components of any true
description of George Washington fail to be necessarily true of him; they
do not determine reference in the sense that they do not provide
necessary and sufficient conditions for being George Washington across
possible worlds. George Washington, the same George we have in mind,
could have died as a child. If he had died, he never would have become a
general or president, would never have married, and so forth. Thus
known descriptions of George Washington are not part of the meaning of
the term “George Washington,” if meanings are what determine refer-
ence. The fact that we can imagine that the very child who became
president might have gone on to be a carpenter, or even might have died
in infancy, shows this is the case. We are entertaining these counter-
factuals as descriptors that could have been true of George himself, so
something other than the descriptions we are negating must be allowing
us to use the term to refer to him. Notice that Kripke is appealing to
psychological data in his theorizing; our intuitions are data. These
intuitions provide evidence concerning how the concepts underlying the
meaning of proper names work, how their content is determined.

If descriptions associated with proper names do not determine ref-
erence, neither definitionally or probabilistically, what does? Kripke’s
answer has two parts: (1) a baptism that initially establishes the referential
relation, and (2) a causal chain between that baptized person (or place or
other bearer of a proper name) and a successful act of reference. That I
can successfully refer to George Washington is ensured by the right kind
of causal chain between George, the baby, his parents who named him,
and the elementary school teachers or my parents, whoever introduced
the term to me and who used it supported by a successful causal chain of
the same sort. Thus, Kripke’s causal theory of reference appeals to social
and historical factors to determine the content of an individual’s mental
representations.

Kripke’s theory of proper names is especially important here because
of its extension to other terms. Putnam and Kripke argued that the causal
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theory of reference applies to natural kind terms, such as gold, water, tiger,
star, and electron, as well as to proper names. This makes sense of the
division of cognitive labor we observe in our use of natural kind terms—
we can and do defer to experts in determining the referents for them. Just
as for proper nouns, Putnam and Kripke argued that the knowledge we
have about natural kinds (whether in the form of classical definitions,
exemplars/prototypes, or theories) does not determine the referents of
natural kind concepts (e.g., Putnam, 1975). No part of any description of
a natural kind term is necessarily true of that kind by virtue of the
meaning of the term denoting it. This includes even such putative ana-
lytic truths as “cats are animals” or “gold is a metal.” Essences cannot be
stipulated as a matter of linguistic convention, and the current knowledge
we have about the referents of natural kind terms, whether represented in
the form of prototypes, exemplars, or theories, is always subject to
revision in the course of scientific progress.

Putnam’s Twin Earth scenarios complete the argument for “wide
content.” Wide content is that aspect of meaning that is in part deter-
mined by factors outside of the head. Putnam asks us to imagine a world
exactly like ours, with each of us duplicated by a twin who has had
identical experiences to us as he or she grew up. Let the time be before
the advent of modern chemistry, in either world. The twin has all of the
same mental representations as his or her earth version does, at least
understood purely internally—the symbols in the twins’ languages are the
same and the twins have the same prototypes, theories, and exemplars
represented. The only difference is that the stuff in the oceans and rivers
that comes down from the sky, and that we call water on earth, is a totally
different chemical compound (H2O vs. XYZ) from the compound that
plays the same role on Twin Earth. The internal processes underlying
categorization would be the same for me and my twin, yet my “water”
does not refer to the same stuff as does his or her “water,” and indeed, if
I traveled to Twin Earth and radioed home, “Lots of water here,” the
linguistic intuition of many (but not all) commentators dictates that I’d be
saying something false. These intuitions complement those Kripke
elicited in his proper name discussions in showing that the referents of
a term or a mental representation are determined partly by the world
itself and partly by the causal connections between the entities in the
world and the speaker or thinker.
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Psychologists might reasonably wonder why their theorizing should
be constrained by impossible science fiction scenarios. (The one just
mentioned is impossible, but others with the same sort of import are
possible but not actual.) The intuitions these scenarios elicit are them-
selves data, much in the same way grammaticality judgments or moral
intuitions are. They lay bare how our concepts work. More convincingly
to psychologists, the data in support of psychological essentialism also
point to the same conclusion. We can use a term to refer without
knowledge that would allow us to represent (as part of a prototype,
definition, or theory) the essential features that make it the case that the
entities it refers to are in its extension. If that is so, something else besides
our knowledge of those entities must determine reference; something
determines reference that is not part of a definition, prototype, or theory
we represent. Kripke’s causal theory of reference sketches one way that
wide content may be determined, but any theory on which reference is
determined by some mechanism through which entities in the world are
causally connected to our mental representations is a theory of wide
content. Kripke’s theory dictates that the causal history of a term is
important to reference determination, but there is also a nonhistorical
version called “informational semantics” that emphasizes causal covaria-
tion rather than causal history (Dretske, 1981; Fodor, 1998).

Putnam and Kripke took reference as the rock-bottom phenomenon
that a theory of concepts must account for. Accordingly, the theory is
silent concerning most of the phenomena of interest to psychologists.
Inference, categorization decisions, conceptual combination, and lan-
guage production and comprehension—conceived of as behaviors to be
explained in terms of computational processes—simply do not fall under
the theory, for these must be explained by what’s inside the head. Psy-
chologists’ responses have been that, if this is so, they are not particularly
interested in wide content. Psychologists are concerned with the format
and computational role of mental representations, and if these do not
determine the referents of concepts, so be it. Fine, but we psychologists
must recognize that we are ignoring a central desideratum for a theory of
concepts: what determines their extensions. Surely an adequate theory
must get this problem right because, if our concepts of real entities
(in contradistinction to fictional ones) are not appropriately connected
to the world, they would not support learning about it. Unless we accept
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radical fictionalism about theoretical terms, we must agree that our
physics and chemistry yield knowledge of gold and electrons, and that
must be because the concepts we deploy refer to these entities. Fur-
thermore, the data on psychological essentialism supports the Kripke-
Putnam intuitions. We do deploy concepts in the absence of knowledge
that would allow us to categorize entities under them, partly drawing on
a division of cognitive labor, deferring to experts, and we do take our
representations to be revisable. That is, we do not deploy our concepts as
if our conceptions of and beliefs about the entities that fall under them
determine reference, even probabilistically.

Theories of acquisition and theories of concepts are mutually con-
straining. The Kripke theory about how concepts are acquired is not
intended as a psychologically adequate theory of the origin of concepts.
According to the theory, what fixes the referent is what initially allows
the language community user to glom onto the entities in the extension
of a concept—a supposed baptism. This clearly applies only to external
symbols, terms in language, and most transparently to proper nouns.
What determines reference for any subsequent use of the concept is a
causal chain between the baptism and the symbol in question. If one
accepts the Kripke causal theory of reference, a theory of acquisition will
be a theory of how a person’s concepts come to have the right causal
connections to the world. The theory is not remotely worked out
enough to support such an account.

In my view, we must accept the arguments for wide content. As I
have said, the evidence for psychological essentialism points to the same
conclusion. However, in addition to accounting for the referential
relations between symbols and their extensions, our theory of concepts
should account for at least some of the other phenomena on our wish list
for a theory of concepts, which leads me to endorse a dual-factor theory
of conceptual content. But before turning to dual-factor theory, I discuss
another version of a theory of conceptual content that puts reference as
the core of content determination: Fodor’s theory of concept atomism.

Concept Atomism

The philosopher Jerry Fodor (1998) favors information semantics over
Kripke’s causal history theory of reference. According to information
semantics, content depends on idealized causal covariation. Fodor
believes that what determines the content of a given mental
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representation, at least a primitive one, is a causal connection between the
entities it refers to and the symbol itself, a connection that guarantees that
the symbol ideally covaries with the entities in its extension. Fodor’s view
of wide content differs from Kripke’s in that he emphasizes the role of
processes inside the head as sustaining the causal relations. Fodor assumes
that factors inside the head, such as perceptual mechanisms and inferential
relations among symbols, will have an important part to play in the
mechanisms that mediate the causal links that ensure that symbols covary
appropriately with their referents. The literature on information
semantics sometimes adopts the term “sustaining mechanism” to refer to
the grab bag of processes that connect symbols to their referents. His-
torical and social factors, of the sort envisioned by Kripke, may be part of
the sustaining mechanisms for the symbols of language and the concepts
they express. Conceptual role may be also be part of the sustaining
mechanisms that connect symbols to the world. Conceptual role simply
isn’t content determining in the traditional way this is understood, for
reasons of psychological essentialism and the fact that no part of what we
represent about the entities in the extension of a given concept is
immune from revision.

Importantly, Fodor offers no theory of the sustaining mechanisms.
He calls the sustaining mechanisms themselves “mere engineering,” and
assumes that an account of them will be very messy, indeed. Unlike
Putnam and Kripke, whose arguments for wide content were the focus of
their work, Fodor is concerned with the implications of accepting
the arguments for wide content for a psychological theory of concepts.
He argues that the considerations reviewed above that militate against
the classical view of concepts (both the psychologists’ responses and
the philosophers’ responses) show that a vast number of concepts are
“atoms”—that is, they are without internal structure. Atoms are primitive
in all of the empiricists’ senses of the term. Primitive concepts,
by definition, have no representational structure. They are the ultimate
building blocks of beliefs, the atoms from which propositions are built.
What makes conceptual atomism a radical theory is Fodor’s claim that
almost all concepts of the grain of single lexical items (including electron,
cancer, break, carburetor) are primitive. They are definitional primitives
(not constructed from other concepts, even probabilistically or in terms of
their place in a theory). They are developmental primitives (innate).
And they are interpretational primitives (not decomposed into other
concepts in thought or in language production and comprehension). This
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is indeed a radical denial of the classical view of concepts, and also of all of
the theories psychologists have offered in response to the classical view.

By now the arguments that concepts of this grain are definitionally
primitive should be totally familiar. They are the well-rehearsed argu-
ments that there are no definitions of most lexical concepts and that there
need be no represented necessary and sufficient conditions, no proto-
types, no theories, no knowledge, that determine whether an entity is an
electron, a dog, or an exemplar of killing.

Fodor’s picture of interpretational primitiveness is simple. Concepts
are partly individuated by the symbols themselves. Suppose couch and sofa
are synonyms, causally connected to the very same entities in the world.
Nonetheless, they are distinct concepts because they are represented by
distinct symbols. This, by the way, is how Fodor solves a critical problem
for information semantics. Information semantics would seem to require
that the content of phlogiston and troll be identical, since these two con-
cepts have the same extensions (namely, none). But concepts are indi-
viduated, in Fodor’s view, by the symbols themselves: phlogiston and troll
are distinct concepts because they are represented by distinct symbols in
the mind. It is these atomic symbols that enter into the inferential and
compositional processes that constitute thought; they need not be (nor
can they be) decomposed further.

Fodor accepts the empiricist distinction between primitive and
complex concepts. Indeed, in addition to reference, Fodor takes com-
positionality as the central desideratum for a theory of concepts. Con-
cepts are the unit of thought, and thought is productive. Complex
concepts do have internal structure; the concept purple cow has each of the
concepts purple and cow as components. According to Fodor, complex
concepts are typically expressed with phrases in natural language. Here’s a
Fodorian example of compositionality: our lexical concepts allow us to
think about all the grandmothers under age 40who live in Boston, whose
granddaughters are married to dentists. Composed concepts are complex
(as in the classical view) and a theory of concepts absolutely must mesh
with an explanation of the capacity for conceptual composition. Fodor
argues that a virtue of the classical view is that it can handle composition,
and that it is a problem for prototype theory, exemplar theory, and
internalist theory-theory that they cannot.
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Fodor assumes that for prototype theory or internalist theory-theory
to explain compositionality, we must be able to derive the prototype or
place in a theory of the complex concept from the prototypes or place in
a theory of the constituents. Patently, we cannot do that. Many complex
concepts do not even have prototypes or places in theories. We do not
categorize the entities that fall under many complex concepts by
matching current exemplars with stored representations of exemplars of
those entities (for we often have no stored representations of exemplars).
An example is not a tiger.Others have prototypes or exemplars or places in
intuitive theories, but users of the concepts need not represent them. An
example of this is Paul Auster novel (for those of us who have read none).
Laurence and Margolis (1999) call this the “missing prototype” problem.
Other complex concepts have prototypes and represented exemplars, but
we cannot predict those exemplars or prototypes from our representa-
tions of the exemplars/prototypes/places in theories of their constituents.
Examples are pet fish, wooden spoon. Similarly, our biological theory of
tigers does not contribute to the prototype or exemplars we represent of
“toy tiger” or “statue of a tiger.” As Fodor says, prototypes/exemplars/
theories don’t usually compose, if by that one means that one can derive
the prototype/exemplar/place in theory of the composite from those of
the constituents (but see Smith, Osherson, Rips, & Kean, 1988, for
progress in showing how one might do so, at least in some limited
circumstances).

So how does Fodor’s atomic version of information theory handle
composition? Fodor does not try to derive the causal connections between
complex concepts and their extensions from the causal connections
between the primitives and their extensions plus laws of composition. Since
we have no idea what kinds of causal connections ensure that symbols
appropriately covary with the entities to which they refer (no theory of the
sustaining mechanisms), we could not possibly provide such an account.
Rather, Fodor gives a very different account of how the content of a
primitive concept is determined (information semantics) and how the
content of a complex, composed concept is determined. He assumes the
empiricists, along with the linguistics, are on the right track for complex
concepts. For example, the rules of compositional semantics determine that
the extension of “not a tiger” is the complement of the extension of “tiger,”
and information semantics determines the extension of “tiger.”
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As Laurence and Margolis (1999) point out, this same move should
be open to prototype/exemplar/theory theorists. However the content
of lexical concepts is determined, we can appeal to the rules of com-
positional semantics to account for the content of phrasal ones. Because
Fodor is not interested in mere engineering, he doesn’t show us how the
sustaining mechanisms for complex concepts can be derived from the
sustaining mechanisms of their constituents. He holds the prototype,
exemplar, and theories to a higher standard in explaining composition-
ality than he holds his own theory. Explaining the productivity of
thought is a difficult task for any theory of concepts, and it is likely that
the branches of cognitive science that will provide the most insight into
this problem are formal linguistics and logic. Atomic theories of concepts
are no better off here than are those theories that posit internal con-
ceptual structure to lexical concepts.

I have dwelt on Fodor’s theory for several reasons. Fodor is one of
the few philosophers who places his theorizing about concepts firmly in
the context of cognitive science and the representational theory of mind.
He shows us most clearly how difficult it will be to find a single theory
that accounts for all of the phenomena on our list of desiderata. But most
important for my present purposes, he puts accounting for concept
acquisition at center stage. I now turn to the third sense in which Fodor
believes atomic concepts to be primitive: they are developmental pri-
mitives.

In his debates with Piaget at the famous Royamount conference,
Fodor (1980) advanced the argument mentioned in chapter 1 that
learning processes cannot create representations with more expressive
power than their input. This follows, he argued, from the premise that
learning is a form of hypothesis testing and confirmation, as well as from
the premise that to test a hypothesis one must already have the resources
to state it. Therefore, one cannot learn a logic with more power than its
input, and thus Piaget’s stage theory cannot be a correct description of
cognitive development. Although I agree with Fodor’s conclusion that
Piaget’s characterization of the stages of cognitive development is wrong,
Fodor’s argument does not successfully establish that this is so. Chapters 8
to 11 took on Fodor’s challenge to cognitive science, demonstrating that
there are discontinuities in conceptual development and fleshing out the
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bootstrapping mechanisms that underlie the construction of representa-
tional resources more powerful than their input.

Important for us here is Fodor’s related argument that all lexical
concepts must be innate. Fodor’s conceptual atomism, according to
which lexical concepts are primitive, led him to the conclusion that all
500,000 lexical concepts in the Oxford English Dictionary (plus all the
concepts that all uncoined words express) are innate! Fodor painted
himself into this corner, thus:

1. All learning mechanisms reduce to hypothesis formation and testing.
2. Hypotheses that play a role in learning new concepts must be for-

mulated in terms of available concepts, using the machinery of
compositional semantics.

3. Primitive concepts are not formulatable (definitionally or probabilis-
tically) in terms of other concepts.

4. Therefore, primitive concepts cannot be learned, and thus must be
innate.

5. Lexical concepts are primitive.
6. Therefore, lexical concepts must be innate.

Fodor argued that if we accept that lexical concepts are primitives
(i.e., atoms, not composed out of other concepts), then we are forced to
the conclusion that they are innate. Thus, Fodor’s atomistic theory stands
or falls with his nativist theory of concept acquisition.

Just as psychologists have not been much interested in wide content,
neither have many concerned themselves with Fodor’s argument that all
lexical concepts must be innate. Since the conclusion of the argument is
ridiculous, there must be something wrong with it. I agree that the
conclusion is ridiculous, but I also agree with Laurence and Margolis
(2002) that it is a serious challenge to cognitive science and, like other
philosophical puzzles, such as Goodman’s riddle about induction, it is
important to see where the argument goes wrong.

Many cognitive scientists accept the argument that conceptual pri-
mitives must be innate (e.g., Jackendoff, 1989; Pinker, 1994), and they
respond to Fodor’s paradox by denying that lexicalized concepts are
primitive (i.e., by denying premise 5). Others, including myself, have
argued that the concept primitive must be differentiated (Carey, 1982).
Definitional or interpretational primitives are not necessarily
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developmental primitives. My answer to Fodor’s argument for radical
concept nativism is the same as my answer to his more general argument
against developmental discontinuities. Quinian bootstrapping mechanisms
underlie the learning of new primitives, and this learning does not consist of
constructing them from antecedently available concepts (they are defini-
tional/computational primitives, after all) using the machinery of compositional
semantics alone. Thus, I deny premises 1 and 2 of Fodor’s argument.

The rest of this chapter develops my response to Fodor’s paradox in
the context of laying out the version of the theory-theory of concepts that
I am led to by considering the problem of conceptual development. It is a
two-factor theory, accepting the Kripke-Putnam arguments for wide
content and the evidence for psychological essentialism, but asserting that
aspects of the conceptual role must be seen as content determining as well.
Many philosophers have advocated two-factor theories; here, I draw
especially upon the work of Ned Block (1986, 1987).

The Dual-Factor Theory of Concepts

Information semantics, with its focus on wide content, is silent on most of
the phenomena that psychologists look to a theory of concepts to
explain. We must look inside the head to account for the productivity of
thought, for how concepts can fit together to form thoughts, for the role
of concepts in language comprehension and production, for the processes
through which categorization is accomplished, and for at least part of the
story about concept formation and acquisition. Many philosophers accept
that at least some of the items on the psychologists’ list of phenomena a
theory of concepts should account for are in its domain, and whatever
machinery accounts for the use of concepts will be an aspect of the
determination of their contents. In response, they proposed a dual-factor
theory of content determination.

Dual-factor theories posit two aspects of concept determination (or
alternatively, two aspects of the determination of the meaning of terms),
wide and narrow. Wide factors underlie the differences in concepts
between me and my twin on Twin Earth—my concept water picks out
H20 and my twin’s picks out XYZ. Narrow factors underlie those
aspects of concepts that my twin and I share—every aspect of meaning
that is determined by what’s inside our heads. Of course, Putnam would
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not deny that I and my twin share mental representations with identical
format and internal conceptual role; he depends upon this, after all, as
he develops his science fiction scenario to argue that these internal
factors don’t suffice to individuate concepts. Putnam would also allow
that mental representations do all the work psychologists want of them,
except the epistemological and semantic work. At issue, then, between
Putnam-Kripke and dual-factor theorists is whether on the one hand
internal conceptual role is genuinely semantic, part of what determine
the meanings of our terms, including mental symbols, or whether, on
the other hand, internal conceptual role is merely part of the nuts and
bolts of how concepts refer, as Jerry Fodor claims. Dual-factor theorists
take the first of these paths, and so must spell out in what ways mental
representations play a role in determining what a given mental symbol
means.

I approach dual-factor theory in two steps. First, I summarize several
considerations that favor the conclusion that inferential role plays a role in
determination of the content of concepts. Second, I turn to the question
of how we might separate the aspects of conceptual role that are content
determining from those that have other parts to play in our theory of the
mind.

Thinking about the content of at least one class of concepts provides
an existence proof for narrow content. Conceptual role is the sole source of
meaning for logical connectives—words like “if”, “or” and “not.” The
meanings of logic connectives are exhausted by their role in conceptual
combination. There are no entities in the world that cause “or” to be
tokened. The concept or gets its meaning from its relations to other
connectives (“and,” “not”) and the computations that allow one to derive
the truth conditions from a complex proposition (P or Q) from the truth
values of the constituent propositions (P, Q). However the relevant the-
ories of narrow content work out in the case of logical connectives, they
might be drawn upon in theories of narrow content for terms with wide
content for which information semantics applies—for concepts that would
thus fall under dual-factor theory. Of course, we still need positive argu-
ments for dual-factor theory in the case of concepts with wide content.

At issue in dual-factor theory is how the conceptual or inferential
role of concepts figures in determining the meaning of those that are
causally connected to entities in the world. One way inferential relations
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with other symbols plays a role in determining the content of a given
mental symbol is by being part of sustaining mechanisms that causally
connect entities in the world to it. As mentioned above, Fodor does not
deny that the inferential role plays a part in sustaining mechanisms; rather,
he insists that the information that is part of this is “mere engineering”
and is not content determining. Following Putnam-Kripke, he argues
that there is no information about the entities that falls under a concept
that is analytically true of them, no prototype or theory that are part of
what individuates a given concept. Dual-factor theorists need to counter
with convincing arguments that some aspects of the inferential role that
sustain the connections between entities in the world and mental
representations are not mere engineering.

The philosopher Ned Block (1986, 1987) provides strong reasons
for believing that internal conceptual role determines some part of true
content. Block emphasizes the phenomena information semantics
cannot account for—the productivity of thought, meaning-dependent
inference, explaining incommensurability, and explaining the different
between different terms which have the same reference—arguing that
these phenomena are in the domain of a theory of concepts, and thus the
aspects of conceptual role that account for them are genuinely content
determining. In addition, he argues that even the information seman-
ticists’ sacred phenomenon—reference—cannot be accounted for
without appealing to conceptual role. Take natural kind concepts like
tiger or gold, for example. Block argues that although no particular
component of the actual sustaining mechanisms that connects tigers to
our concept tiger or gold to our concept gold may be constituitive of
these concepts, conceptual role still determines the nature of these
sustaining mechanisms. It does so by determining that psychological
essentialism is true of our natural kind concepts. It is due to our mind, to
our psychology, that natural kind terms pick out entities in the world
that share hidden essences that we may never discover. Psychological
essentialism is just that—psychological. It enables us to have concepts of
entities whose nature may be hidden from us. As Block puts it, con-
ceptual role determines the type of function between entities in the
world and our types of representations of them, even if a variety of
sustaining mechanisms can do the trick.
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The force of Block’s argument becomes clear when we consider a
solution to Fodor’s radical nativism paradox that was offered, indepen-
dently, by the psychologist John Macnamara (1986) and by the philo-
sophers Steven Laurence and Eric Margolis (2002). Taking on the
difficult case of natural kind concepts, both groups pointed out that
sustaining mechanisms can themselves be learned, although Macnamara
did not use this terminology. Macnamara suggested that the mental
symbol that represent tigers is same natural kind as [image/prototype/
theory of tiger]. You can read the brackets as indicating demonstrative
reference to an image or prototype or theory. The image/prototype/
theory of a tiger can be learned by standard prototype extraction or
theory learning procedures, and the resulting representational structure
then subserves categorization and inference, as in standard prototype/
exemplar/theory-theory analyses of concepts. This representation does
not fall prey to the Putnam-Kripke objections to these theories because
being tagged as a natural kind concept ensures concept holders do
not take the stereotype/exemplars/theories they currently represent to
determine the content of the concept; as they deploy the concept, they
are committed to these being revisable. Thus, Macnamara presupposed
psychological essentialism, although his work predated the research
that falls under that description. The argumentative force of Macna-
mara’s proposal is that we take a role slot we have for natural kind
concepts and plug in a representation of an exemplar of a newly
encountered natural kind, and what we get is a new concept. The
exemplar-representation, or prototype abstracted from several exem-
plars, or representation of the kind constrained by its role in an intuitive
theory, is thus part of the sustaining mechanism presupposed by
information semantics. It helps ensure that our symbol tiger refers to
tigers and not lions.

This proposal denies premises 1 and 2 of Fodor’s argument for radical
concept nativism. Although standard learning mechanisms that are
varieties of hypothesis-testing processes underlie formation of the image/
prototype/theory of tiger, and forming these does make use of standard
processes for concatenating over antecedently available representations,
this process does not exhaust learning the concept. The force of the
role slot, same natural kind as, is that none of the features of tigers that
constitute the representation of the prototype/exemplar/theory is
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nonrevisable. The force of this role slot is that these features do not
determine category membership, even probabilistically.

Making essentially the very same proposal, Laurence and Margolis
(2002) independently suggested that standard theories of prototype/
examplar/theory learning can be brought to bear on learning a “kind
syndrome” that is then part of the sustaining mechanism that connects
entities in the world, tigers, with the mental symbol tiger. Kind syn-
dromes are those aspects of our mental representations of tigers that help
us use our concept tiger to refer to tigers. These will be idiosyncratic from
person to person and are learned through garden-variety learning pro-
cesses, involving hypothesis testing over antecedently available concepts.
This isn’t to say that understanding these processes is easy, or that we have
a complete theory (see Murphy, 2002), but this is the bread-and-butter
work on the psychology of concepts. As in Macnamara’s account, it is
because the kind syndrome is deployed in the context of a commitment
to psychological essentialism that these representations succeed in picking
out natural kinds. The concept user is not committed to a kind syn-
drome’s being nonrevisable. Quite the contrary; the concept user takes
the concept to refer to entities whose existence, properties, and nature are
determined by hidden causal processes—its essence—and is always open
to revising the kind syndrome. That is, we have conceptual role
machinery that treats words as placeholder kind terms; a conceptual role
is generated by plugging a new term into that role and coordinating it
with of members of the kind that have been ostensively defined by others
in the language community. This is not a definition of the sort that the
classical view envisioned, and creating such a representation is not
exhausted by the hypothesis-testing processes that establish a represen-
tation of the exemplars. Rather, the mechanism of concept acquisition
Laurence and Margolis envisioned, like that proposed by Macnamara, is a
matter of using the term “tiger” as a placeholder which is linked to two
things: an abstract role for natural kinds and then to an exemplar or
prototype, the result being a new role. That process violates Fodor’s
premises 1 and 2.

Margolis and Laurence claim that their solution to Fodor’s paradox is
framed within Fodor’s own theory of concepts, and that concepts can be
learned because sustaining mechanisms can be learned. But, in fact, their
solution is not framed within information semantics alone. Rather, it falls
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under dual-factor theory. Yes, some sustaining mechanisms—those
involving the conceptual role—can be learned; but according to Fodor,
these are not content determining, and Margolis and Laurence agree.
That’s why they put their solution in the context of the learner’s com-
mitment to psychological essentialism. But it is part of the conceptual role of
the concept tiger that it falls under psychological essentialism. Not all
concepts do, and that tiger does is necessary for the kind syndrome to
properly sustain it. This is what Block means by the conceptual role
determining the nature of the function between the entity in the world
and the mental symbol.

Block offers an additional, closely related solution to Fodor’s radical
concept nativism paradox. He also denies that learning a concept involves
stating it in terms of already understood concepts. As mentioned in
chapter 11, Block gave the example of how a student learns the concepts
mass, force, energy, momentum, and acceleration. He points out that one
learns relations among these terms themselves, such as “Force equals mass
times acceleration,” without being able to define force, mass, or acceleration
in terms of concepts that the learner already possesses. Block is appealing
to Quinian bootstrapping here; the sentences and equations that express
the relations among the concepts themselves are initially placeholder
structures. The difference between this proposal and that described above
is that it does not depend on an already established abstract conceptual
role, natural kind.

The Quinian bootstrapping mechanisms discussed in chapters 8 to11
put meat on the bones of Block’s proposal. In those chapters I discussed
how the placeholder symbols are generated and also the modeling
activities through which these placeholders become meaningful. The
bootstrapping proposal has two crucial parts. First, the creation of the
placeholders is sometimes part of the process through which mental
symbols themselves come into being. Before learning physics, there are
no symbols in the mind that express the concept mass or the concept
acceleration. This aspect of bootstrapping concerns the coining of new
atomic primitives. As described in chapters 8 and 11, there are two
processes through which these placeholder structures are created. When
the bootstrapping is in the service of an individual’s mastery of an already
constructed theory, as when a physics students masters Newtonian
mechanics, or a child masters the numeral list representation of the
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positive integers, then the placeholder structure is constructed through
the combinatorial mechanisms of formal symbol systems but it is learned
from others through ordinary processes of language acquisition. One can
use the sentence “Force equals mass times acceleration” with a meaning
exhausted by knowing what equals and times mean, plus understanding
that the syntax of this sentence in English means that the variables are
related, F¼MA. In cases of the original, historical episodes of conceptual
change, such as those achieved by Maxwell and Kepler (chapter 11),
placeholder creation also draws upon the combinatorial mechanisms of
formal symbol systems, but it is created as part of a tentative abductive
leap and then explored through extensive modeling activities. In either
case, at least some of the meanings in a pure placeholder structure are
exhausted by relations among the symbols within it. These meanings are
given by conceptual role. Next, modeling processes create new, richer,
meanings for these symbols, and these modeling processes also crucially
recruit conceptual role (see chapters 8 through 11).

Finally, I dwell on one last argument that the inferential role has an
important part to play in determining conceptual content. Chapters 8
through 11 argued that accounting for the origin of concepts requires
distinguishing conceptual change from belief revision that does not involve
conceptual change. The reason that this distinction is crucial to the project
of understanding the origin of concepts is that, in cases of conceptual
change, new primitives are created, whereas belief revision always involves
testing hypothesis that are stated in terms of already available concepts.
Kitcher (1978) placed his analysis of incommensurability in the context of a
theory of wide content. As he pointed out, there are multiple sustaining
mechanisms, some involving conceptual role and some involving social
practices. At any given time, the community assumes that all of these
methods of reference determination connect a given symbol with the same
class of referents. In cases of conceptual change, it transpires that some pick
out different entities from others, and some, like the methods that iden-
tified phlogiston in the world, pick out nothing at all.

The analysis of conceptual change offered in chapters 8 though 11 is
broader than that offered by Kitcher, for it assumes a dual-factor theory of
content determination. Being a dual-factor theory, which allows for wide
content, it can accept Kitcher’s analysis as being part of the story. But an
analysis of conceptual change in terms of certain types of differentiations,
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coalescences, and changes in conceptual types and cores concerns internal
conceptual structure rather than wide content alone. To reiterate a point
made above, consider again the concepts that articulate the successive
physical theories described in chapter 10. Children with the first theory
have not differentiated weight from density, and so have no mental symbol
causally connected with weight. In the second theory, weight and density
are interdefined and crucially depend on concepts of matter and material
kind. That weight is an extensive variable, determined by amount of
matter, is not merely the second theory’s conception of weight. Without
extensive concepts of matter and amount of stuff, the thinker can have no
symbol causally connected to weight at all.

Of course, not everybody accepts that one must distinguish concep-
tual change from belief revision. To those who do not, I can only point to
the analyses in chapters 8 through 11 and reiterate that doing so makes
sense of those episodes of conceptual development that are so very difficult
for people to achieve. The theory of the origins of concepts articulated in
this book commits us to a dual-factor theory of concepts, and to the degree
that that theory is supported by evidence and by engendering a fruitful
research program, the dual-factor theory gains support.

Finally, the dual-factor theory I presuppose here allows for cases of
conceptual change that a theory of meaning exhausted by wide content
alone would not. If all content is wide content, and content is therefore
determined by the extension of a concept, then so long as the extension
of a symbol remains the same over historical or ontogenetic change, its
meaning is the same. If Aristotle’s Greek term that we translate as “water”
referred to water, then its wide content is the same as modern chemistry’s
concept water. If meaning in exhausted by wide content, it is irrelevant to
the meaning of the term water that today’s concept is embedded in a
chemistry articulated in terms of an ontology of atoms, molecules, and
subatomic particles, and Aristotle’s in terms of an ontology in which
water was one of the four terrestrial basic elements (along with earth, air,
and fire). These would merely be different beliefs about water.

From a dual-factor theory point of view, there is nothing inherently
problematic with the possibility of conceptual change in these cases.
Although many, if not most, examples of conceptual change involve
changes both in wide and in narrow content, there could be changes
within those aspects of conceptual role that determine narrow content
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alone. As I will argue below, the aspects of conceptual role that deter-
mine conceptual content include those conceptual roles that bring new
primitives into existence. So changes in conceptual roles of existing
concepts that relate them to new primitives are candidates for changes in
narrow content. Aristotle’s physical theory is incommensurable with the
physics and chemistry of the 19th century or later, and that is mostly seen
in the emergence of new primitives, such as element, atom, electron, and
matter. The Aristotelian term we translate with element clearly expresses a
concept different from Mendeleev’s element, and the latter cannot be
expressed in terms of concepts available to Aristotle. This analysis allows
us to see a sense in which Aristotle’s water shares wide content with
modern chemistry’s water, but differs in narrow content.

To summarize, dual-factor theory holds that both internal concep-
tual role and causal connections between entities in the world and mental
symbols (both social/historical causal connections and physical causal
connections involving perceptual mechanisms and inferential processes)
play roles in determining content. Unlike the purely internalist psy-
chological accounts of concepts, dual-factor theory denies that concep-
tual roles, whether specified in terms of definitions, exemplars, or
theories, are sufficient to determine content. And it offers three different
solutions to Fodor’s concept nativism paradox. First, as Block argued,
some aspects of conceptual role determine the nature of the mapping
between entities in the world and symbols in the mind. Different types of
symbols (e.g., symbols for natural kinds vs. symbols for logical con-
nectives determine different types of mappings. Second, as Macnamara
and as Laurence and Margolis argued, and as Fodor would agree, the
causal processes that make information semantics work, the sustaining
mechanisms, include conceptual role. These conceptual roles can be
learned, and involve standard associative, prototype abstraction, and
hypothesis formation and testing mechanisms. Third, concept learning
mechanisms include Quinian bootstrapping processes, and these do not
involve concatenation over a previously available set of concepts. In
Quinian bootstrapping, conceptual role is necessary to content deter-
mination, because the content of some of the terms in the placeholders is
exhausted by their conceptual role, and because the modeling processes
that fill in the placeholders are constraint satisfying processes and the
relevant constraints are part of conceptual role.
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To conclude my highly selective review of the classical view of
concepts and some psychologists’ and philosophers’ response to it, it is
not going to be easy to come up with a theory that accounts for all of the
phenomena on the empiricists’ list, and it will not look like the
empiricists’ theory—the classical view. It will have a place for wide
content and it will have a place for narrow content. At present, we do not
have worked-out theories of either. We do not have a theory of the
causal connections between entities in the world and mental symbols
(Fodor’s “mere engineering”), but there are good reasons to believe that
both Kripke’s historical and social factors and causal factors that operate
within the body will be players. We also do not have a theory for which
aspects of conceptual role are content determining.

This last point is important. Without being able to say what aspects of
conceptual role determine narrow content and which merely reflect
beliefs formulated over the concepts, one does not have a theory of the
narrow content part of a dual-factor theory. My goal has been to show, in
broad strokes, how understanding the origin of concepts motivates the
dual-factor theory of concepts. I hereby acknowledge that I have no
worked-out account of which aspects of the conceptual role are content
determining, which are part of sustaining mechanisms, and which are
merely part of the web of beliefs we hold about the entities in the world
our concepts pick out. That a dual-factor theory of the sort I envision can
be worked out is an article of faith, but no more so than any other broad
view of concepts, including the Putnam-Kripke causal theory and the
information semantics theory of wide content or purely internal,
descriptivist views of the sorts psychologists favor. In the next sections,
I offer some suggestions about how the dual-factor theory might be
developed, first for the representations within core cognition, then for
explicit mathematical representations, and finally for explicit repre-
sentations within intuitive theories.

A Theory of the Symbols in Core Cognition

What theories of concepts apply to the symbols of core cognition? What
determines their content (internal and external) and their role in infants’
thought? It is in pondering these questions that the importance of the
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similarity between systems of core cognition and perceptual systems
comes to the fore. The psychological theories of concepts (prototype/
exemplar/knowledge/internalist theory-theory views) do not apply to
perceptual representations. Consider depth representations. Depth
representations are simply the output of perceptual analyzers. There is
no prototype or exemplar of any given distance that plays a role in
creating a representation of it. Nor is there any theory that is part of
everyone’s psychology in which distance is a theoretical term, although
representations of distance clearly play a computational role in repre-
sentations of size and shape and in navigation, reaching, and other
activities. Similarly, prototypes, exemplars, and theories play no role in
creating representations of objects. Infants can form representations of
radically unfamiliar objects as subject to the constraints on object
motion, just as they do for familiar toys and bottles. This does not mean
that there are no represented exemplars of objects—of course, there are.
But the processes of creating object files rely on spatio-temporal
information that has no access to these exemplar representations. Sim-
ilarly, analog magnitude representations of the approximate cardinal
values of sets are imply the output of an innate input analyzer; this
process does not involve prototype abstraction or representations of
particular exemplars.

The story for agents is more complex. Presumably for infants as well
as adults, humans are prototypical agents. Furthermore, as detailed in
chapter 5, there is an innate representation of what human faces look like
—an innate face schema—that clearly plays a role in recognizing faces as
such, learning to identity one’s mother’s face, identifying eyes and the
focus of gaze, and supporting facial imitation. We might think of this as
an innate prototype, but this prototype does not provide the content for
the concept. Rather, we might think of the innate face schema as part of
the innate input analysis mechanism that allows the infant to identify
agents in the world—part of the sustaining mechanism that connects
agents to infants representations of them. Furthermore, the second input
analysis mechanism—agency from action (see chapter 5)—makes use of
no prototype. The representations in core cognition, like perceptual
representations, are the output of dedicated input analyzers.

Dual-factor theory applies straightforwardly to the symbols of core
cognition, just as it does to perceptual representations. Wide content has
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pride of place, and information semantics (rather than the social/historical
theory of reference) is the relevant theoretical framework for thinking
about wide content of core cognition’s representational systems. The
symbols in core cognition are not public, so they are not in the domain
of the Kripke-Putnam social historical theory of wide content.
Evolutionarily adapted perceptual analyzers ensure that the symbols of
core cognition are causally connected to the entities in the world they
represent. Computational role certainly is part of the sustaining
mechanisms that connect entities in the world to the symbols of core
cognition; the input analyzers themselves are computational devices.
Nonetheless, the symbols of core cognition have narrow content as well
as wide content. The core cognition concept object has the content it does
partly because of within-module constraints on the models of events
involving objects (e.g., the solidity constraint) but also perhaps because of
innate or learned constraints on the representations that are the output
of the core cognition modules (e.g., contact causality). For example,
objects are categorized into those capable of self-generated motion and
those that are not, and this categorization guides further inference (see
chapter 5). Once infants have learned that unsupported objects fall,
evidence that an entity does not fall when it is apparently suspended in
mid-air is taken either to mean that it is not an independent object (i.e., it
is part of an object it is adjacent to) or that it is capable of self-generated
motion. Thus, post-module conceptual role is important to individuating
objects and in placing them into their basic ontological kinds.

The question arises: which aspects of conceptual role are content
determining, which part of sustaining mechanisms, and which merely
part of the web of knowledge infants have about the entities in the
domains of core cognition? On my account, the content determining
computational role is that which is innately specified and never over-
turned. This aspect of conceptual role is part of the sustaining mechan-
isms embodied in the input analyzers that underlie the causal connections
between the symbols of core cognition and the real world entities in its
domain. This aspect of conceptual role also guides domain-constituitive
inferences. For object representations, this would include representations
of spatio-temporal continuity, the solidity constraint, boundedness, and
contact causality. For agent representations, this would include concepts
of goals, perceptual and representational states, referential intent, and

Conclusion II: Implications for a Theory of Concepts 525



dispositional causal agency. For number representations, this would
include the computations that support comparison and numerical com-
putations like addition and multiplication. Notice that the Quine-Put-
nam arguments against narrow content that derive from the observation
that no aspect of conceptual role is nonrevisable and thus no aspect of
conceptual role can determine meaning, do not apply, as a matter of
empirical fact, to the representations of core cognition. These are never
revised. They may be overturned in our explicit theories of the world,
but they continue throughout life to determine the content of the
representations within core cognition.

In sum, we see that we have at least a sketch of the nature of the
representations within core cognition, a sketch that includes both narrow
and wide content and that satisfies all of our pre-theoretic desiderata for a
theory of concepts. Representations of objects, agents, goals, approxi-
mate cardinal values of sets, and so forth, have the content they do
because evolutionarily adapted perceptual analyzers and inferential
devices ensure that they are causally connected to the entities in the
world they represent. That these representations are, as a matter of
empirical fact, never overturned makes the dual-factor theory of them
play out differently from that for natural kind terms and explicit math-
ematical symbols. The representations of core cognition, when expressed
in language, determine sufficiently shared content that people can dis-
agree about the entities represented. The inferences core cognition
supports are explained by innate computational structure, as well as
learned generalizations stated over its symbols. Core cognition is pro-
ductive. Some inferences supported by core cognition are instantiated
within module, in the form of constraints on the processes that build
iconic models of the world—for example, the solidity constraint. But the
outputs of the core cognition modules are central and integrated. For
example, infants represent agents as having objects as the goals of their
reaches, and as interacting causally with each other and with objects.
Core cognition may include processes that build complex iconic models,
rather than language-like propositions, but it is nonetheless genuinely
productive.

I turn now to how dual-factor theory might be fleshed out in the
case of explicit conceptual representations.
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A Theory of the Content of Explicit Symbols

Most concepts are not connected to the entities they represent by evo-
lutionarily adapted input analyzers and innately specified sustaining
mechanisms. Most concepts do not participate in innate domain-con-
stituting inferences. Furthermore, as Quine and Putnam taught us,
internal inferential relations among explicit symbols for natural kinds, at
least, are always in principle revisable, and this applies even to those that
begin life mapped to representations in core cognition. Modern physics
allows us to see that objects like tables are not solid, and that other
material entities can pass through the space occupied by tables. Although
the object representations of core cognition continue to articulate our
representations of the physical world throughout our lives, we can create
explicit representations of objects that are incommensurable with core
cognition (see chapter 10). How, then, do the explicit concepts in
intuitive and formal theories get their meaning? What is the right
semantics for public symbols that do not express developmental primi-
tives and that are not definable in terms of developmental primitives?
What determines the content of concepts such as seven, a half, and matter?

Mathematical Symbols

Space and expertise preclude a discussion of what gives mathematical
symbols their meanings. Questions about the meanings of mathematical
symbols are intertwined with questions about the ontology of mathe-
matical entities. In some views, mathematics is entirely a formal enter-
prise, in the sense that mathematical symbols refer to nothing external to
mathematical systems themselves. If we accept this view, then the
meanings of the concepts that articulate the formalisms are exhausted by
conceptual role

I doubt that anybody would oppose the claim that inferential role
plays an important part in providing mathematical symbols with their
meaning. After all, even Fodor agrees that the concepts in logic (if, and,
no, or) get their meaning through their inferential role. Logical repre-
sentations and mathematical ones are closely interrelated. The obvious
question that arises in the case of mathematical concepts is whether
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information semantics could play any role in content determination. Perhaps
dual-factor theory does not apply to them. Perhaps they have no wide
content. Mathematical concepts represent abstract entities; how can there
be causal connections between abstract entities and the concepts that
represent them? Considering how mathematical concepts are acquired
(concepts of fractions and integers being the cases considered in earlier
chapters) shows us how dual-factor theory works out in this case. We see
why we need inferential role semantics to characterize the content of
mathematical symbols, and also we find a place for wide content.

Seven is a single lexical item. Clearly seven is definable in terms of
other concepts (1, number, add, the concepts that articulate Peano’s
axioms), and thus it stands as an immediate counterexample to the claim
that we can never provide a definition that supplies necessary and suffi-
cient conditions for falling under a concept of the grain of a single lexical
item. But that we can provide a definition does not mean that
the definition we offer is stated in terms of developmental primitives,
or that learning the concept was a process of testing hypotheses formu-
lated in terms of those primitives. That all integers can be defined in terms
of 0, 1, and the successor function may be irrelevant to the processes that
give meaning to symbols for integers. Surely children and non-
mathematicians do not possess any explicit encoding of Peano’s axioms.
Furthermore, the primitives in Peano’s axioms are not developmental
primitives: there are no symbols in core cognition with the content 1 or 0
or add (although this content is embodied in the computations defined
over parallel individuation and analog magnitude representations toge-
ther).

Peano’s axioms cannot be totally irrelevant to the meanings of
symbols for integers. Even if the axioms are not explicitly represented,
any representations of integers must be consistent with them. For
example, Gelman and Gallistel’s (1978) counting principles ensure that
numerals satisfy Peano’s axioms and thus represent integers. Boot-
strapping the counting principles in turn ensures that seven has the con-
tent one more than six, which is one more than five, which is one more than four,
and so on, even though this content is not explicitly stated as such over
mental symbols. Inferential role (in this case in the form of the counting
principles) gives verbal numerals their meaning, and that inferential role is
learned via a bootstrapping process.
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Inferential role plays three important parts in the acquisition of
concepts for integers. First, it is central to the creation of the placeholder
symbols. One step in the bootstrapping process involves learning the
numeral list itself. Before this, the child has no atomic symbol (lexical or
internal) that expresses any integer. At the beginning of this process the
only content of these verbal numerals is provided by their place in a
strictly ordered list. Second, inferential role provides the numerical
meaning for “one,” “two,” and “three” in the subset-knower stage (in
the form of long-term memory models of sets of 1, 2, and 3 objects and
computations that compare these via 1–1 correspondence with working-
memory models). These inferential roles are what allow the numerical
meaning of the counting routine to be learned. Third, the numerical
content of seven for cardinal-principle knowers (those children who have
induced how counting represents number) is provided by its part in the
count routine. Thus, inferential role is absolutely central to what makes
the 4-year-old’s “seven” represent the concept 7.

The place of inferential role in initially providing meaning for
symbols for rational numbers (2/3, .5) parallels that for verbal numerals in
every respect. Any rational number can certainly be defined in terms of
other concepts; any rational number is one integer divided by another.
But these primitives are not available at the outset of the bootstrapping
episode; the child does not have the mathematical concept divide. As for
integer representations, inferential role has three parts to play in the
construction of symbols for rational number. The proposition that 2/3 is
2 divided by 3 is a placeholder structure. It tells the child that divide
expresses some operation of one integer on another, and this is all it tells
the child because the relevant concept divide must still be acquired.
Second, inferential role provides the content for integer concepts avail-
able to the child at the outset of the bootstrapping process, as shown
above. Inferential role also provides content for the precursors of the
concept divide: splitting, finding midpoints, and sharing are all compu-
tations carried out over quantities (including integers, to a very limited
extent). Finally, the numeral content of fractions at the end of the
bootstrapping process is, appropriately, that each is one integer divided by
another. This may be explicitly represented, or may remain implicit in
the computations carried out over number representations after this
episode of bootstrapping is complete.
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Thus, the account of how concepts for integers and for rational
numbers are acquired that was offered in chapters 8 and 11 confirms the
importance of conceptual role to initially providing meaning for these
symbols. But what of wide content? Collections of physical individuals
exist, and the cardinal values that constitute the numerosities of those
collections are among their real properties. Of course, physical collections
and their cardinal values do not exhaust the mathematical concepts set
and integer, but mathematical development never overturns the fact that
the cardinal value of my set of hands is 2.

If we grant that collections of physical individuals are one instantiation
of sets, and cardinal values of collections are one instantiation of integers,
then the child’s initial representations with numerical content are causally
connected to the world through the innate input analyzers of the systems
of core cognition. Three systems of core cognition (parallel individuation,
analog magnitude number, and set-based quantification) have input
analyzers that create represents of sets of individuals and support numerical
computations over these representations. These numerical representations,
for which information semantics definitely applies, get mathematical
cognition off the ground. Thus, dual-factor theory applies to the repre-
sentations that articulate numerical cognition. Conceptual role definitely
plays a large part in determining the content of numerical symbols, but
information semantics also has its place. Pairs of things are causally-
informationally connected to our various concepts of pairs.

What I have just argued is that an appreciation of how Quinian
bootstrapping works allows us to see how new primitive symbols are
coined in the first place and how conceptual role provides meaning to
those symbols. In addition, an appreciation of these processes allows us to
address the question of what aspect of conceptual role determines the
narrow content of symbols for integers and fractions. Distinguishing
conceptions from beliefs, in this case, poses different problems from those
in the case of concepts embedded within intuitive theories, for the
inferences within mathematics are mostly deductive. Why do we think
the information contained in Peano’s axioms is constituitive of the
concept natural number, whereas the fact that the squares of odd numbers
are odd is not? Perhaps it does not much matter how we answer this
question, because of the deductive relations between the properties of
natural numbers. But one natural way to answer it is to suggest that the
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conceptual role we take to determine the narrow content of any symbol
for an integer (e.g., two or seven) is the minimum needed to capture the
work integers do in mathematics. Of course, there are different axio-
matizations of natural number, with different primitives and thus dif-
ferent proposals about the minimum.

The question for psychologists is which, if any, of these anxioma-
tizations captures how the symbols people use get their meaning. In
psychological work we seek to characterize the format, conceptual role,
and extensions of the actual symbols people have (e.g., seven, one-half).
The first representations with the content natural number are the count list,
deployed in accord with Gelman and Gallistel’s counting principles. That
these capture the successor function is what ensures that they represent
natural number. But surely we do not think that the content of seven for
an adult or a professional mathematician is provided by the counting
principles? No, but we can propose that it is constrained by them as
follows: the part of the inferential role of seven that provides the narrow
content of this symbol, even for adults, is that which ensures that their
conceptual role is consistent with the counting principles.

Thus, we have at least a sketch of a dual-factor theory of the content
of explicit mathematical symbols—one that satisfies all of the desiderata
on our wish list for a theory of concepts. We can account for their
acquisition (chapters 8 and 11), their role in inference and productive
thought (through a characterization of their format and the computations
defined over them), and their stability. (So long as we can characterize
both wide and narrow content of mathematical symbols, then people
share mathematical concepts so long as they have representations that
satisfy that characterization.)

Natural Kind Concepts

The challenge for a theory of the semantics of explicit mathematical
symbols is seeing a place for wide content. In contrast, the challenge for
a theory of the semantics of natural kind concepts is seeing any place
for narrow content. After all, externalist theories of wide content were
developed in the arena of natural kind concepts, and these are the
concepts to which psychological essentialism applies. The Kripke-
Putnam arguments alluded to above, along with the evidence for
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psychological essentialism, convince me that wide content is important in
our analysis of natural kind concepts. In laying out the arguments for
dual-factor theory, I sketched the general arguments for narrow content
as well as wide content, even for natural kind terms.

Some phenomena in the domain of theory of concepts necessarily
depend on conceptual role (inference, conceptual combination, and
others). In addition, conceptual role has a crucial part to play even in
explaining how symbols refer. The sustaining mechanisms that mediate
between entities in the world and mental symbols involve conceptual
role, and conceptual role determines the nature of this function. In the
case of natural kind terms, it is our mind that determines that the concept
falls under the assumptions of psychological essentialism. Finally, the need
to distinguish conceptual change from belief revision, and the charac-
terization of Quinian bootstrapping as one of the mechanisms that
underlies conceptual change, requires, and thus supports, a dual-factor
theory of concepts.

In cases of Quinian bootstrapping of natural kind concepts, we see
that conceptual role plays an essential part in concept acquisition, beyond
being part of the kind syndromes that partially connect symbols in the
head to kinds in the world. Seeing how this is so provides a wedge into
the problem of characterizing what aspects of conceptual role determine
narrow content. In bootstrapping episodes, inferential role enters the
process of content determination in many different ways. Just as in the
case of mathematical symbols, placeholder structures are the source of
new symbols, and therefore are necessary for concept individuation. The
content of placeholder structures is exhausted by conceptual role. That
placeholder structures are the source of new symbols is seen from all of
the conceptual changes documented in chapters 8 through 11. Before the
child learns the words “weight” and “density,” and placeholder relations
such as “density equals weight divided by volume” and “weight provides
a better measure of amount of matter than does volume,” the child has no
mental symbols that refer to these properties of physical entities. Before
Kepler coined the term “vis motrix” as a placeholder for the force that is
given off by the sun and causes the planets’ motion, nobody had any
concept that was even remotely connected to the concept gravity.

But, you might reply, isn’t this true of all word learning? People
encounter new words every day (hundreds of them, when they are
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young), and a new word may always be an invitation to form a concept.
True enough, but it is an empirical question whether when children
encounter a new term they already have a concept the term will express.
In cases of fast mapping, where new words are mastered with virtually
1-trial learning, the learner often has already formed the concept:
“I wonder what the animals that is the same natural kind as that [where
“that” refers to an individual for which a kind syndrome has already
been established] is called”—this is merely learning a label. Alternatively,
the learner already has all the conceptual apparatus in place to connect the
newly learned symbol with a newly represented kind upon first
encountering a word applied to a member of a natural kind.

The cases of concept acquisition discussed in chapters 8 through 11 are
most definitely not cases of fast mapping. The child has the symbol “two”
as part of a count routine and as a quantifier with a meaning related to
“some” or “plural” for six to nine months before assigning a cardinal
meaning to it. Similarly “a half” and “heavy” are in the child’s lexicon for
years before they come to have the same meaning as do the adults’
symbols with the same form. In cases like these, learning the placeholder
structure provides symbols in natural language and also in the language of
thought that did not exist before. And unlike learning a new term for a
kind of animal or a kind of artifact, the only narrow content these newly
coined symbols has is provided by inferential role (that is, determined by
the relations to other symbols in the placeholder structure), plus whatever
wide content is inherited from the social practices that play a role in the
Putnam-Kripke causal theory of reference. These considerations lead to
one broad answer concerning which aspects of conceptual role are con-
tent determining: those aspects that specify the meaning of the symbols in
the placeholder structures that introduce them.

This proposal can’t be quite right, because of the Putnam-Kripke-
Quine arguments that all aspects of conceptual role for natural kind
concepts are open to revision. These arguments apply to all conceptual
roles, including those aspects of conceptual role that determine the
content of the placeholder structures. I would amend the suggestion thus:
in cases of conceptual change, there are clear ancestor/descendant rela-
tions among concepts. The aspects of conceptual role that are content
determining are those that determine the content of the placeholder
structures that introduce the concepts in the first place, plus those aspects

Conclusion II: Implications for a Theory of Concepts 533



of conceptual role that relate those concepts to new primitives that result
from differentiations, coalescences, and changes in type and core that
constitute the conceptual changes these concepts subsequently undergo.

This proposal avoids radical holism with respect to the aspect of
conceptual role that is content determining by appealing to the con-
ceptual roles through which new symbols are introduced into the lan-
guage of thought and their subsequent developmental history, limiting
the relevant conceptual role to relations to other concepts that indicate
conceptual change. In the case of the thermal theories between Galileo
and Black, the relevant suite of interrelated concepts are heat, cold, and
temperature (chapter 10); in the case of conceptual change within the
intuitive theory of matter that occurs in normal development between
ages 6 and age 12, given the right input, the relevant suite of concepts
includes weight, density, volume, mass, matter, liquid, solid, and gas
(chapters 10 and 11).

This proposal is related to other natural proposals within the theory-
theory of concepts for distinguishing those aspects of conceptual role that
determine narrow content from those aspects that merely represent our
beliefs about the entities the concepts refer to. Conceptual role is graded
in centrality: some changes in conceptual relations would have great
ramifications throughout the whole theory whereas others would not.
The content determining aspects of conceptual role are the most central
ones. In this version of distinguishing those aspects of conceptual role that
determine narrow content from those that do not, the distinction is a
matter of degree, allowing some degree of holism. The proposal is related
to the previous one because the aspects of conceptual role that determine
the meaning of the placeholder concepts are likely to be central in this
sense, for the modeling processes that give meaning to these concepts are
constrained to respect this structure as much as possible. Furthermore,
those aspects of conceptual role that participate in conceptual changes are
always central in this respect.

Another related proposal draws on the importance of causal struc-
tures in the theories in which natural kind concepts are embedded (Keil,
1989). Causal properties are ordered; some causally relevant features of
entities derive from more fundamental ones. For example, we explain the
capacity of some elements to chemically bind with oxygen by the
structure of their electrons, rather than the reverse. The causally deepest
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features that articulate theories are among the most central ones in the
sense of the previous proposal, and thus the two proposals would each
suggest that the causally deepest features of the entities that fall under a
natural kind concept are among those that determine narrow content.
Indeed Ahn (e.g., Ahn & Kim; 2000; Ahn, Kim, Lassaline, & Dennis,
2000) provides evidence that participants are sensitive to causal status and
weigh causally deeper features more than causally more peripheral ones
in categorization judgments. The suggestion here is that this fact reflects
something deep about concepts. Causally central features are part of what
determines narrow content of natural kind concepts, as well as being an
important part of what determines categorization decisions.

These related suggestions point to possible solutions to the problem
of specifying what aspect of conceptual role may determine narrow
content. The general arguments for the dual-factor theory of concepts,
and the existence of narrow content, force us to accept that there must be
some solution to this problem, but that solution is not likely to be simple
or clean. Just as myriad factors enter into the processes that determine
wide content (Fodor’s “mere engineering”), so too myriad factors will
probably conspire to separate those aspects of conceptual role that are
content determining from those that are not. Furthermore, it is likely to
be a graded rather than dichotomous distinction, in which case we will
have to live with some degree of holism. However, considerations of
how the content of the placeholder structures that introduce new pri-
mitives into the repertoire is determined (entirely by conceptual role), as
well as a focus on just those episodes of conceptual restructuring that
introduce new primitives and lead to new conceptual roles involving the
ancestor symbols, their descendents, and these new primitives, allow us to
identify an aspect of conceptual role that certainly is important in
determining narrow content and may be all we need to do the trick of
distinguish content determining conceptual role from mere belief.

The Theory-Theory of Concepts

The theory-theory of conceptual development was discussed in chapter
12. Intuitive theories of the physical, biological, social, and mental worlds
are important conceptual structures, for they reflect our ontological
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commitments and contain representations of causal mechanisms, thereby
constraining causal learning and inductive inference. Therefore,
accounting for the acquisition of these framework theories is an impor-
tant project in the discipline of cognitive development. However, my
focus here is on a different version of the theory-theory: the theory-
theory of concepts.

The two theory-theories are independent because it may be true that
the key to understanding human knowledge acquisition is understanding
the process of theory development, whereas it may not be true that
theory-relative conceptual role plays a part in determining conceptual
content. Those who endorse a single-factor theory of content determi-
nation (wide content alone), such as Putnam and Kripke and Fodor,
would probably be happy to endorse the importance of explicit and
intuitive theories to mental life, and thus the importance of these
structures in the study of cognitive development, while at the same time
denying the theory-theory of concepts.

As just discussed, my analysis of the origin of concepts commits me to
a version of the theory-theory of concepts. A consideration of concept
origins also provides some hints about how to distinguish the content
determining aspects of conceptual role from mere beliefs the entities in
the extensions of natural kind concepts. The two-factor theory of con-
cepts I advocate here does not fall prey to the problems with purely
internalist versions of the theory-theory, because there are two types of
processes that determine conceptual content. The content of concepts is
not entirely determined by their internal conceptual role; both wide and
narrow content surely exist. With respect to inferential role, though, my
version of the theory-theory contrasts with the classical view, with
prototype/exemplar theories, and with entirely holistic pictures such as
Murphy’s knowledge theory.

Conclusions: The Origins of Concepts

For the most part, cognitive psychologists concerned with human con-
cepts have abandoned the goal of accounting for their origins, for they
ignore the question of developmental primitives. Developmental psy-
chologists charting the conceptual repertoire of human infants, and
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comparative psychologists charting the conceptual repertoire of nonhu-
man animals, provide notable exceptions to this generalization, for they
seek to characterize the representational resources that get human cog-
nition off the ground, in both ontogenetic and evolutionary contexts.
Chapters 2 through 7 synthesized what we have learned about the
ontogenetic primitives from which our conceptual system is built. They
are much richer and more abstract than empiricist theorizing would
allow; we do not build all knowledge from perceptual or sensori-motor
representations. However, core cognition is perception-like in many
ways, and the representations within core cognition are therefore dif-
ferent in crucial respects from the later-developing explicit concepts that
articulate human thought.

In addition to providing an abstract characterization of core cogni-
tion, these early chapters consisted of case studies of particular concepts:
object, agent, number, and cause. Characterizing the conceptual repertoire
of infants is difficult work, requiring convergent evidence from many
methods. It also requires studying parallel suites of representations in
order to ascertain which representations constrain other ones. Quite
obviously, such work is absolutely necessary if we are to understand the
origin of concepts. Only by charactering infants’ quantificational repre-
sentations can we ask whether integer representations transcend them.
Only by characterizing infants’ concepts of agents can we know whether
infants represent others’ epistemic states. Only by characterizing infants’
representations do we know what work a theory of concept acquisition
must accomplish.

A second project central to understanding where the human capacity
to think thoughts formulated over concepts, such as cancer, gold, and
infinity, is characterizing whether there are discontinuities in the course of
conceptual development, and if so, what kinds there are. The second half
of the book provided evidence for conceptual discontinuities at two
different levels of abstraction. Abstractly, explicit concepts differ, quali-
tatively, from those in core cognition. More concretely, within a given
domain of knowledge, conceptual development often results in repre-
sentations with more expressive power, or representations incommen-
surable with, those that were their input. Chapters 8 through 11

documented discontinuities in conceptual development and character-
ized one learning process involved in each of these case studies—Quinian
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bootstrapping. The arguments in these chapters are central to under-
standing the origin of concepts, for Quinian bootstrapping is a mecha-
nism through which new conceptual primitives are introduced into
thought.

Just as for core cognition, the argument was illustrated through
specific cases studies of conceptual development. Within intuitive
mathematics, the worked examples were the origin of concepts of natural
number and of rational number (chapters 4, 7, 8, 9, and 11). Within
scientific theory development the most fully worked-out example was
the description of the incommensurability between the thermal concepts
of Galileo and his students (who invented the thermometer but failed to
acquire the concept temperature) and Black (who distinguished heat from
temperature and formulated the concepts of the caloric theory). Boot-
strapping processes were illustrated in discussions of Kepler and Maxwell
(chapters 10 and 11). With intuitive theory change, the fully discussed
example involved conceptual changes in children’s understanding of the
material world, which involve differentiating the concept matter from the
concept physically real entity and differentiating weight from density. In this
case study I illustrated how data are brought to bear on characterizing the
conceptual discontinuities and also how data are brought to bear in
evaluating proposals for the Quinian bootstrapping process that underlies
the change (chapters 10 and 11).

The human conceptual repertoire is a unique phenomenon on this
earth, posing a formidable challenge to the disciplines of cognitive sci-
ence: how are we to account for the human capacity for conceptual
representations? I have sketched a response to this challenge, illustrating it
through many case studies that show the interdependence of the projects
of accounting for the origin of concepts and understanding what con-
cepts are.
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